000279252 001__ 279252
000279252 005__ 20210129221021.0
000279252 0247_ $$2doi$$a10.1039/C5NR02258D
000279252 0247_ $$2ISSN$$a2040-3364
000279252 0247_ $$2ISSN$$a2040-3372
000279252 0247_ $$2WOS$$aWOS:000358207700052
000279252 037__ $$aFZJ-2015-07267
000279252 082__ $$a600
000279252 1001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b0$$eCorresponding author
000279252 245__ $$aUnderstanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations
000279252 260__ $$aCambridge$$bRSC Publ.$$c2015
000279252 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449672230_32511
000279252 3367_ $$2DataCite$$aOutput Types/Journal article
000279252 3367_ $$00$$2EndNote$$aJournal Article
000279252 3367_ $$2BibTeX$$aARTICLE
000279252 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279252 3367_ $$2DRIVER$$aarticle
000279252 520__ $$aWe report on a 2D kinetic Monte Carlo model that describes the resistive switching in electrochemical metallization cells. To simulate the switching process, we consider several different processes on the atomic scale: electron-transfer reactions at the boundaries, ion migration, adsorption/desorption from/to interfaces, surface diffusion and nucleation. These processes result in a growth/dissolution of a metallic filament within an insulating matrix. In addition, the model includes electron tunneling between the growing filament and the counter electrode, which allows for simulating multilevel switching. It is shown that the simulation model can reproduce the reported switching kinetics, switching variability and multilevel capabilities of ECM devices. As a major result, the influence of mechanical stress working on the host matrix due to the filamentary growth is investigated. It is demonstrated that the size and shape of the filament depend on the Young's modulus of the insulating matrix. For high values a wire-like structure evolves, whereas the shape is dendritic if the Young's modulus is negligible.
000279252 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000279252 588__ $$aDataset connected to CrossRef
000279252 7001_ $$0P:(DE-HGF)0$$aKaupmann, Philip$$b1
000279252 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b2$$ufzj
000279252 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C5NR02258D$$gVol. 7, no. 29, p. 12673 - 12681$$n29$$p12673 - 12681$$tNanoscale$$v7$$x2040-3372$$y2015
000279252 8564_ $$uhttps://juser.fz-juelich.de/record/279252/files/c5nr02258d.pdf$$yRestricted
000279252 8564_ $$uhttps://juser.fz-juelich.de/record/279252/files/c5nr02258d.gif?subformat=icon$$xicon$$yRestricted
000279252 8564_ $$uhttps://juser.fz-juelich.de/record/279252/files/c5nr02258d.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000279252 8564_ $$uhttps://juser.fz-juelich.de/record/279252/files/c5nr02258d.jpg?subformat=icon-180$$xicon-180$$yRestricted
000279252 8564_ $$uhttps://juser.fz-juelich.de/record/279252/files/c5nr02258d.jpg?subformat=icon-640$$xicon-640$$yRestricted
000279252 8564_ $$uhttps://juser.fz-juelich.de/record/279252/files/c5nr02258d.pdf?subformat=pdfa$$xpdfa$$yRestricted
000279252 909CO $$ooai:juser.fz-juelich.de:279252$$pVDB
000279252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000279252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000279252 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000279252 9141_ $$y2015
000279252 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2014
000279252 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279252 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000279252 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000279252 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279252 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000279252 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279252 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279252 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000279252 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2014
000279252 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000279252 980__ $$ajournal
000279252 980__ $$aVDB
000279252 980__ $$aI:(DE-Juel1)PGI-7-20110106
000279252 980__ $$aUNRESTRICTED