| Home > Publications database > Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations > print |
| 001 | 279252 | ||
| 005 | 20210129221021.0 | ||
| 024 | 7 | _ | |a 10.1039/C5NR02258D |2 doi |
| 024 | 7 | _ | |a 2040-3364 |2 ISSN |
| 024 | 7 | _ | |a 2040-3372 |2 ISSN |
| 024 | 7 | _ | |a WOS:000358207700052 |2 WOS |
| 037 | _ | _ | |a FZJ-2015-07267 |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Menzel, Stephan |0 P:(DE-Juel1)158062 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations |
| 260 | _ | _ | |a Cambridge |c 2015 |b RSC Publ. |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1449672230_32511 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 520 | _ | _ | |a We report on a 2D kinetic Monte Carlo model that describes the resistive switching in electrochemical metallization cells. To simulate the switching process, we consider several different processes on the atomic scale: electron-transfer reactions at the boundaries, ion migration, adsorption/desorption from/to interfaces, surface diffusion and nucleation. These processes result in a growth/dissolution of a metallic filament within an insulating matrix. In addition, the model includes electron tunneling between the growing filament and the counter electrode, which allows for simulating multilevel switching. It is shown that the simulation model can reproduce the reported switching kinetics, switching variability and multilevel capabilities of ECM devices. As a major result, the influence of mechanical stress working on the host matrix due to the filamentary growth is investigated. It is demonstrated that the size and shape of the filament depend on the Young's modulus of the insulating matrix. For high values a wire-like structure evolves, whereas the shape is dendritic if the Young's modulus is negligible. |
| 536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Kaupmann, Philip |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Waser, R. |0 P:(DE-Juel1)131022 |b 2 |u fzj |
| 773 | _ | _ | |a 10.1039/C5NR02258D |g Vol. 7, no. 29, p. 12673 - 12681 |0 PERI:(DE-600)2515664-0 |n 29 |p 12673 - 12681 |t Nanoscale |v 7 |y 2015 |x 2040-3372 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/279252/files/c5nr02258d.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/279252/files/c5nr02258d.gif?subformat=icon |x icon |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/279252/files/c5nr02258d.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/279252/files/c5nr02258d.jpg?subformat=icon-180 |x icon-180 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/279252/files/c5nr02258d.jpg?subformat=icon-640 |x icon-640 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/279252/files/c5nr02258d.pdf?subformat=pdfa |x pdfa |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:279252 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)158062 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131022 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2015 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOSCALE : 2014 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NANOSCALE : 2014 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|