000279262 001__ 279262 000279262 005__ 20240610120600.0 000279262 0247_ $$2doi$$a10.1073/pnas.1512261112 000279262 0247_ $$2ISSN$$a0027-8424 000279262 0247_ $$2ISSN$$a1091-6490 000279262 0247_ $$2WOS$$aWOS:000363130900035 000279262 0247_ $$2altmetric$$aaltmetric:4008247 000279262 0247_ $$2pmid$$apmid:26424449 000279262 037__ $$aFZJ-2015-07277 000279262 082__ $$a000 000279262 1001_ $$0P:(DE-HGF)0$$aPopkov, Vladislav$$b0$$eCorresponding author 000279262 245__ $$aFibonacci family of dynamical universality classes 000279262 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2015 000279262 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449673194_32512 000279262 3367_ $$2DataCite$$aOutput Types/Journal article 000279262 3367_ $$00$$2EndNote$$aJournal Article 000279262 3367_ $$2BibTeX$$aARTICLE 000279262 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000279262 3367_ $$2DRIVER$$aarticle 000279262 520__ $$aUniversality is a well-established central concept of equilibrium physics. However, in systems far away from equilibrium, a deeper understanding of its underlying principles is still lacking. Up to now, a few classes have been identified. Besides the diffusive universality class with dynamical exponent z=2, another prominent example is the superdiffusive Kardar−Parisi−Zhang (KPZ) class with z=3/2. It appears, e.g., in low-dimensional dynamical phenomena far from thermal equilibrium that exhibit some conservation law. Here we show that both classes are only part of an infinite discrete family of nonequilibrium universality classes. Remarkably, their dynamical exponents zα are given by ratios of neighboring Fibonacci numbers, starting with either z1=3/2 (if a KPZ mode exist) or z1=2 (if a diffusive mode is present). If neither a diffusive nor a KPZ mode is present, all dynamical modes have the Golden Mean z=(1+5√)/2 as dynamical exponent. The universal scaling functions of these Fibonacci modes are asymmetric Lévy distributions that are completely fixed by the macroscopic current density relation and compressibility matrix of the system and hence accessible to experimental measurement. 000279262 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0 000279262 588__ $$aDataset connected to CrossRef 000279262 7001_ $$0P:(DE-HGF)0$$aSchadschneider, Andreas$$b1 000279262 7001_ $$0P:(DE-HGF)0$$aSchmidt, Johannes$$b2 000279262 7001_ $$0P:(DE-Juel1)130966$$aSchütz, Gunter M.$$b3$$ufzj 000279262 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1512261112$$gVol. 112, no. 41, p. 12645 - 12650$$n41$$p12645 - 12650$$tProceedings of the National Academy of Sciences of the United States of America$$v112$$x1091-6490$$y2015 000279262 8564_ $$uhttps://juser.fz-juelich.de/record/279262/files/PNAS-2015-Popkov-12645-50.pdf$$yRestricted 000279262 8564_ $$uhttps://juser.fz-juelich.de/record/279262/files/PNAS-2015-Popkov-12645-50.gif?subformat=icon$$xicon$$yRestricted 000279262 8564_ $$uhttps://juser.fz-juelich.de/record/279262/files/PNAS-2015-Popkov-12645-50.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000279262 8564_ $$uhttps://juser.fz-juelich.de/record/279262/files/PNAS-2015-Popkov-12645-50.jpg?subformat=icon-180$$xicon-180$$yRestricted 000279262 8564_ $$uhttps://juser.fz-juelich.de/record/279262/files/PNAS-2015-Popkov-12645-50.jpg?subformat=icon-640$$xicon-640$$yRestricted 000279262 8564_ $$uhttps://juser.fz-juelich.de/record/279262/files/PNAS-2015-Popkov-12645-50.pdf?subformat=pdfa$$xpdfa$$yRestricted 000279262 909CO $$ooai:juser.fz-juelich.de:279262$$pVDB 000279262 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130966$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000279262 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0 000279262 9141_ $$y2015 000279262 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000279262 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000279262 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000279262 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000279262 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2014 000279262 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000279262 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000279262 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000279262 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000279262 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000279262 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000279262 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000279262 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000279262 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2014 000279262 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0 000279262 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1 000279262 980__ $$ajournal 000279262 980__ $$aVDB 000279262 980__ $$aI:(DE-Juel1)IAS-2-20090406 000279262 980__ $$aI:(DE-Juel1)ICS-2-20110106 000279262 980__ $$aUNRESTRICTED 000279262 981__ $$aI:(DE-Juel1)IBI-5-20200312 000279262 981__ $$aI:(DE-Juel1)IAS-2-20090406 000279262 981__ $$aI:(DE-Juel1)ICS-2-20110106