000279262 001__ 279262
000279262 005__ 20240610120600.0
000279262 0247_ $$2doi$$a10.1073/pnas.1512261112
000279262 0247_ $$2ISSN$$a0027-8424
000279262 0247_ $$2ISSN$$a1091-6490
000279262 0247_ $$2WOS$$aWOS:000363130900035
000279262 0247_ $$2altmetric$$aaltmetric:4008247
000279262 0247_ $$2pmid$$apmid:26424449
000279262 037__ $$aFZJ-2015-07277
000279262 082__ $$a000
000279262 1001_ $$0P:(DE-HGF)0$$aPopkov, Vladislav$$b0$$eCorresponding author
000279262 245__ $$aFibonacci family of dynamical universality classes
000279262 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2015
000279262 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449673194_32512
000279262 3367_ $$2DataCite$$aOutput Types/Journal article
000279262 3367_ $$00$$2EndNote$$aJournal Article
000279262 3367_ $$2BibTeX$$aARTICLE
000279262 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279262 3367_ $$2DRIVER$$aarticle
000279262 520__ $$aUniversality is a well-established central concept of equilibrium physics. However, in systems far away from equilibrium, a deeper understanding of its underlying principles is still lacking. Up to now, a few classes have been identified. Besides the diffusive universality class with dynamical exponent z=2, another prominent example is the superdiffusive Kardar−Parisi−Zhang (KPZ) class with z=3/2. It appears, e.g., in low-dimensional dynamical phenomena far from thermal equilibrium that exhibit some conservation law. Here we show that both classes are only part of an infinite discrete family of nonequilibrium universality classes. Remarkably, their dynamical exponents zα are given by ratios of neighboring Fibonacci numbers, starting with either z1=3/2 (if a KPZ mode exist) or z1=2 (if a diffusive mode is present). If neither a diffusive nor a KPZ mode is present, all dynamical modes have the Golden Mean z=(1+5√)/2 as dynamical exponent. The universal scaling functions of these Fibonacci modes are asymmetric Lévy distributions that are completely fixed by the macroscopic current density relation and compressibility matrix of the system and hence accessible to experimental measurement. 
000279262 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000279262 588__ $$aDataset connected to CrossRef
000279262 7001_ $$0P:(DE-HGF)0$$aSchadschneider, Andreas$$b1
000279262 7001_ $$0P:(DE-HGF)0$$aSchmidt, Johannes$$b2
000279262 7001_ $$0P:(DE-Juel1)130966$$aSchütz, Gunter M.$$b3$$ufzj
000279262 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1512261112$$gVol. 112, no. 41, p. 12645 - 12650$$n41$$p12645 - 12650$$tProceedings of the National Academy of Sciences of the United States of America$$v112$$x1091-6490$$y2015
000279262 8564_ $$uhttps://juser.fz-juelich.de/record/279262/files/PNAS-2015-Popkov-12645-50.pdf$$yRestricted
000279262 8564_ $$uhttps://juser.fz-juelich.de/record/279262/files/PNAS-2015-Popkov-12645-50.gif?subformat=icon$$xicon$$yRestricted
000279262 8564_ $$uhttps://juser.fz-juelich.de/record/279262/files/PNAS-2015-Popkov-12645-50.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000279262 8564_ $$uhttps://juser.fz-juelich.de/record/279262/files/PNAS-2015-Popkov-12645-50.jpg?subformat=icon-180$$xicon-180$$yRestricted
000279262 8564_ $$uhttps://juser.fz-juelich.de/record/279262/files/PNAS-2015-Popkov-12645-50.jpg?subformat=icon-640$$xicon-640$$yRestricted
000279262 8564_ $$uhttps://juser.fz-juelich.de/record/279262/files/PNAS-2015-Popkov-12645-50.pdf?subformat=pdfa$$xpdfa$$yRestricted
000279262 909CO $$ooai:juser.fz-juelich.de:279262$$pVDB
000279262 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130966$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000279262 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000279262 9141_ $$y2015
000279262 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000279262 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279262 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000279262 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000279262 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2014
000279262 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279262 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000279262 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279262 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279262 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000279262 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000279262 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000279262 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000279262 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2014
000279262 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000279262 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1
000279262 980__ $$ajournal
000279262 980__ $$aVDB
000279262 980__ $$aI:(DE-Juel1)IAS-2-20090406
000279262 980__ $$aI:(DE-Juel1)ICS-2-20110106
000279262 980__ $$aUNRESTRICTED
000279262 981__ $$aI:(DE-Juel1)IBI-5-20200312
000279262 981__ $$aI:(DE-Juel1)IAS-2-20090406
000279262 981__ $$aI:(DE-Juel1)ICS-2-20110106