001     279294
005     20240619092059.0
024 7 _ |a 10.1371/journal.pone.0127865
|2 doi
024 7 _ |a 2128/9549
|2 Handle
024 7 _ |a WOS:000355319400055
|2 WOS
024 7 _ |a altmetric:4153113
|2 altmetric
024 7 _ |a pmid:26024352
|2 pmid
037 _ _ |a FZJ-2015-07309
082 _ _ |a 500
100 1 _ |a Wolff, Martin
|0 P:(DE-Juel1)144676
|b 0
245 _ _ |a Amyloid β Oligomeric Species Present in the Lag Phase of Amyloid Formation
260 _ _ |a Lawrence, Kan.
|c 2015
|b PLoS
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1449670317_32510
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Alzheimer’s disease (AD)-associated amyloid β peptide (Aβ) is one of the main actors in AD pathogenesis. Aβ is characterized by its high tendency to self-associate, leading to the generation of oligomers and amyloid fibrils. The elucidation of pathways and intermediates is crucial for the understanding of protein assembly mechanisms in general and in conjunction with neurodegenerative diseases, e.g., for the identification of new therapeutic targets. Our study focused on Aβ42 and its oligomeric assemblies in the lag phase of amyloid formation, as studied by sedimentation velocity (SV) centrifugation. The assembly state of Aβ during the lag phase, the time required by an Aβ solution to reach the exponential growth phase of aggregation, was characterized by a dominant monomer fraction below 1 S and a population of oligomeric species between 4 and 16 S. From the oligomer population, two major species close to a 12-mer and an 18-mer with a globular shape were identified. The recurrence of these two species at different initial concentrations and experimental conditions as the smallest assemblies present in solution supports the existence of distinct, energetically favored assemblies in solution. The sizes of the two species suggest an Aβ42 aggregation pathway that is based on a basic hexameric building block. The study demonstrates the potential of SV analysis for the evaluation of protein aggregation pathways.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Unuchek, Dmitry
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhang, Bo
|0 P:(DE-Juel1)151345
|b 2
|u fzj
700 1 _ |a Gordeliy, Valentin
|0 P:(DE-Juel1)131964
|b 3
|u fzj
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 4
|u fzj
700 1 _ |a Nagel-Steger, Luitgard
|0 P:(DE-Juel1)162443
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1371/journal.pone.0127865
|g Vol. 10, no. 5, p. e0127865 -
|0 PERI:(DE-600)2267670-3
|n 5
|p e0127865
|t PLoS one
|v 10
|y 2015
|x 1932-6203
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/279294/files/Amyloid%20%CE%B2%20Oligomeric%20Species%20Present%20in%20the%20Lag%20Phase%20of%20Amyloid%20Formation.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/279294/files/Amyloid%20%CE%B2%20Oligomeric%20Species%20Present%20in%20the%20Lag%20Phase%20of%20Amyloid%20Formation.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:279294
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151345
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131964
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132029
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162443
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-1-20110106
|k ICS-1
|l Neutronenstreuung
|x 1
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)ICS-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21