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Abstract

Concentrated dispersions of highly charged rod-like colloids (fd-virus particles) in isotropic-
nematic coexistence exhibit a dynamical state when subjected to low-frequency electric fields
[Soft Matter, 2010, 6, 273]. This dynamical state consists of nematic domains which per-
sistently melt and form on time scales typically of the order of seconds. The origin of the
dynamical state has been attributed to a field-induced, cyclic dissociation and association of
condensed ions [Soft Matter, 2014, 10, 1987, Soft Matter, 2015, 11, 2893]. The ionic strength
increases on dissociation of condensed ions, rendering the nematic domains unstable, while
the subsequent decrease of the ionic strength due to association of condensed ions leads to a
recurrent stabilization of the nematic state. The role of dissociation/association of condensed
ions in the phase/state behaviour of charged colloids in electric fields has not been addressed
before. The electric field strength that is necessary to dissociate sufficient condensed ions to
render a nematic domain unstable, depends critically on the ambient ionic strength of the dis-
persion without the external field, as well as the rod-concentration. The aim of this paper is
to compare experimental results for the location of transition lines and the dynamics of melt-
ing and forming of nematic domains at various ionic strengths and rod-concentrations with
the ion-dissociation/association model. Phase/state diagrams in the field-amplitude versus
frequency plane at two different ambient ionic strengths and various rod-concentrations are
presented, and compared to the theory. The time scale on which melting and forming of
the nematic domains occurs diverges on approach of the transition line where the dynamical
state appears. The corresponding critical exponents have been measured by means of image
time-correlation spectroscopy [Eur. Phys. J. E, 2009, 30, 333], and are compared to the
theoretical values predicted by the ion-dissociation/association model.
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1 Introduction

Phase transitions in colloidal systems can be induced by external electric fields due to interactions
between polarization charges. At high frequencies (in the MHz range), dielectric polarization of
the cores of spherical colloids give rise to the formation of strings of particles, and their sub-
sequent field-assisted assembly into sheets [1]-[4]. At these high frequencies, the structure of
the diffuse electric double layer is not affected by the electric field. In addition, hydrodynamic
interactions between the colloidal particles through field-induced electro-osmotic flow ceases to
occur at these high frequencies. For lower frequencies, below about a kHz, interactions between
colloids are induced through the polarization of electric double layers and electro-osmotic flow.
These two types of field-induced interactions give rise to phase transitions, dynamical states and
pattern formation. The coupling between polarization of the diffuse electric double layers and
field-induced electro-osmotic flow is, for example, responsible for the formation of mesoscopically
large zig-zag structures, where electro-osmotic flow persists along the boundaries of the zig-zag
structures [5]-[7]. The present authors found various phases and states that are induced by simi-
larly low-frequency electric fields in dispersions of highly charged colloidal rods, at a concentration
where there is isotropic-nematic coexistence in the absence of the electric field [8]. In particular,
a field-induced dynamical state is found where nematic domains persistently melt and form on
a seconds time scale. A mechanism underlying the existence of this dynamical state is proposed
in Ref.[9], where temporal cyclic dissociation and association of condensed ions plays an essential
role. The dissociation of condensed ions in to the bulk dispersion leads to a decreased Debye
screening length which can destabilize the nematic. After melting of the nematic, re-association
of condensed ions occurs, leading to a decreased Debye length and a re-stabilization of the ne-
matic state. Such a mechanism of dissociation and association of condensed ions has not been
considered before to play a role in field-induced states. Although the location of state transition
lines in the field amplitude versus frequency plane for two rod-concentrations can be described
by the ion-dissociation/association model for a fixed ionic strength (as shown in Ref.[9], with
a corrigendum in Ref.[10]), the critical test where also the ambient ionic strength is varied has
not been performed yet. According to the ion-dissociation/association model, there should be a
strong dependence of the location of transition lines on the ambient ionic strength. In addition,
we present here a comparison with experimental results on the dynamics of melting and forming
of nematic domains from Ref.[11], with an emphasis on the critical divergence of the correspond-
ing time scales on approach of the transition line. The aim of this paper is therefore to test the
dissociation/association model as presented in Refs.[9, 10] against experiments where phase/state
diagrams and time scales for melting and forming of nematic domains are measured at various
ionic strengths, as well as various rod-concentrations.

As a model system for rod-like colloids we use fd-virus particles. These particles have been used
in the past as colloidal model systems for the study of the isotropic-nematic phase transition under
the influence of a magnetic field [12], and later for extensive studies of various liquid crystalline
phases without an external field [13]-[20], as well as for single-particle diffusive behaviour [21]-[23].
In particular, a chiral nematic phase is found for ionic strengths down to 5mM [13, 14, 18, 19],
which is attributed to the helical core-structure of the fd-virus. Fd-viruses consist of a DNA strand
with a contour length of 880nm, which is covered by 2700 proteins. The diameter of the core
is 6.8nm, while the coat proteins renders the fd-viruses relatively stiff, with a persistence length
of about 2500nm. At a pH around 7, the coat proteins carry 8800 negative elementary charges
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[24], which leads to strong Manning-ion-condensation, where the majority of the immobile surface
charges are neutralized by condensed ions.

This paper is organized as follows. In section 2 we briefly present the general features of the
phase/state diagram. The theory that semi-quantitatively describes the location of the transition
line in the field-amplitude versus frequency plane to the dynamical state, as well as the dynamical
features of melting and forming of nematic domains, is summarized in section 3. A necessary
ingredient of the theory is the lower isotropic-nematic binodal concentration, which is addressed in
section 4. In section 5 we present experimental phase/state diagrams for two buffer concentrations
of 0.16mM and 0.0032mM , corresponding to two different ionic strengths, and for various fd-
concentrations. The location of the transition line to the dynamical state is compared to the
prediction by the dissociation/association model in subsection 5.1. The dynamics of melting and
forming of nematic domains is discussed in subsection 5.2.

2 The Electric Phase/State Diagram

The phase/state diagram in the field strength versus frequency plane is given in Fig.1, for a fd-
concentration of 2.0mg/ml. The fd-dispersion is dialyzed against a TRIS/HCl buffer solution
with a concentration of 0.032mM , with a pH of 5.8. The following phases and states are found
(for a more detailed description of the various phases and states, see Ref.[8]):

(i) The N -phase is a coexistence between isotropic and (non-chiral) nematic regions. This is
the phase that exists without the external electric field, and persist to be stable upto a finite
electric field strength. As mentioned in the introduction, at buffer concentrations larger than
5mM the nematic is chiral, due to the helical structure of the core of fd-virus particles. For the
low ambient ionic strength used here, the long-ranged electrostatic repulsions render the average
distance between fd-rods sufficiently large, so that the helical structure of the cores is screened.
The Debye length at this buffer concentration is equal to 54nm (where the solution of carbon
dioxide from the air is taken into account [25]).

(ii) For frequencies below about 300Hz, the nematic domains become chiral nematic, the N∗-
phase, on increasing the field amplitude. The N -to-N∗ transition line is indicated in blue in Fig.1.
This transition is most probably due to the increase of the ionic strength resulting from the overall
dissociation of condensed ions. The chiral nematc state is also seen without the electric field but
for larger ambient ionic strengths.

(iii) At frequencies larger than about 300Hz a uniform phase is found, where the rods are
aligned along the electric field, perpendicular to the electrodes. This phase is named the H-phase,
standing for the homeotropic alignment of the rods. The frequency at which the polarization of the
electric double layer and the layer of condensed ions ceases to occur can be estimated to be around
the frequency where the N∗-to-H transition line is located (the green line in Fig.1). TheH-phase is
therefore stabilized by hydrodynamic interactions through the field-induced electro-osmotic flow.

(iv) At sufficiently high electric field strengths (above the red line in Fig.1), the N∗- and H-
phase transform to a dynamical state, the D-state, where nematic domains persistently melt and
form.

There are two additional gradual transitions which are not indicated Fig.1. Within the N∗-
phase, at low field strengths, the nematic domains form a seemingly interconnected structure.
On increasing the electric field strength, the interconnectivity is gradually lost. There is thus a
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Figure 1: The phase/state diagram for a fd-concentration of 2.0 mg/ml and a TRIS/HCl-buffer
concentration of 0.032 mM . The various phases are discussed in the main text.

gradual transition within the N∗-phase where the chiral nematic texture becomes disconnected
on increasing the field strength [8]. Close to the N∗-to-D transition line the dynamics of melting
is very slow, while far from the transition line the time scale on which melting and forming of
domains occurs levels off to about 1.5 s. There is thus a gradual transition from very slow to fast
dynamics of melting and forming of nematic domains.

It is the dynamical state that is of interest in this paper. In the next section the microscopic
origin of this state is discussed, first on an intuitive level, followed by a semi-quantitative analysis.

3 The Ion-Dissociation/Association Model

The microscopic origin for the existence of the D-state is attributed to the cyclic dissociation and
association of condensed ions. Figure 2, which is taken from Ref.[9], illustrates the mechanism
through which such a cyclic dissociation and association is kinetically induced. First consider a
nematic domain with its director aligned along the direction of the electric field (stage (I) in Fig.2).
In Fig.2 only two rods out of the entire domain are depicted for clarity. The domain orientation
along the field direction is a consequence of single-particle torques resulting from field-induced
polarization of the double-layer and the layer of condensed ions. In such an orientation, their is
a relatively large amount of excess condensed (positive) ions at the top side of the rod (indicated
in red), while there is a depleted region at the bottom part (indicated in blue).The excess of
condensed ions at the top creates an electric field that pushes the ions out-of the condensed layer
into bulk solution (indicated by the arrows in stage (I)). The opposite happens at the bottom part
of the rod. As the concentration of ions in the condensed layer is much larger than in the diffuse
double layer, the net result is a dissociation of condensed ions. After a time comparable to the
time needed for the released ions to diffuse into the bulk solvent, the ionic strength will increase.
This will decrease the Debye length (the extent of the diffuse double layer is indicated in Fig.2
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Figure 2: A sketch of the microscopic origin of the dynamical state, where nematic domains melt
and form. The different stage during a cycle of melting-and-forming of a domain are discussed in
the main text.

by the dotted blue lines around the core of the rods). Hence, in stage (II), the rods carry less
condensed ions, while the Debye length is smaller. A reduction of the Debye length corresponds
to a reduction of the effective concentration (the effective concentration will be quantified in the
subsequent paragraph). When the effective concentration becomes less than the lower isotropic-
nematic binodal, the nematic domain becomes unstable and melts, which is accompanied by a
de-alignment, as depicted in Fig.2 in stage (III). Association of condensed ions occurs as the rods
take orientations towards directions perpendicular to the electric field. This leads in turn to a
decreased ambient ionic strength, and thereby to an increase of the Debye length (as depicted in
stage (IV)). The accompanied increase of the effective concentration renders the nematic phase
stable again. The resulting nematic domain aligns along the electric field direction due to single-
particle torques (see stage (V)), during which polarization takes place leading to stage (I), after
which the cycle subsequently repeats itself.

The above mentioned time-dependent ”effective concentration” is to be understood as fol-
lows. For suspensions of very long and thin colloidal rods with hard-core interactions, Onsager
showed that the location of isotropic-nematic binodal- and spinodal concentrations depends on
the dimensionless concentration (L/d)φ, with L the length of the rod, d the core diameter, and
φ = (π/4) d2 Lρ the volume fraction (the fraction of the total volume occupied by the cores of the
rods), with ρ the number concentration of rods [26, 27]. In case the rods are charged, the same
Onsager theory can be employed, except that the core thickness is larger due to the additional
repulsive electrostatic interactions. This defines an effective, time dependent diameter deff , and
thereby an effective dimensionless concentration (L/deff )φeff . The following expression for the
effective diameter can be derived [9, 10],

deff = κ−1 [ lnKQ + γE ] , (1)
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Figure 3: A sketch of the bifurcation diagram for the isotropic-nematic phase transition, where
the orientational order parameter λ is plotted against the effective concentration. The location of
binodals, spinodals, and stability curves are given, which bound regions where the isotropic and
nematic state are either unstable or meta-stable. The Onsager values of the effective concentration
for the location of binodals and spinodals are given in the lower part of the figure. The red, closed
curve is a sketched of the limit cycle indication cyclic melting and forming of nematic domains.

where κ−1 is the Debye length and γE = 0.5772 · · · is Euler’s constant, and where,

KQ =
2π exp{κ d}(
1 + 1

2κ d
)2 lB

κL2
(N0 −Nc,0 )

2 ,

with d, as before, the core diameter, lB is the Bjerrum length, N0 is the number of immobile
charges chemically attached to the surface of a rod, and Nc,0 the number of condensed ions of a
rod in the absence of an electric field. Considerations concerning the quantification of an effective
diameter can also be found in Refs.[26]-[30]. Note that the total rod-surface charge that is relevant
for the ion-concentrations within the diffuse double layer is equal to −e (N0 −Nc,0 ) (with e the
elementary charge), which the total immobile surface-charge plus the total charge within the layer
of condensed ions.

In order to describe the dynamics of melting and forming of nematic domains, an equation of
motion for the orientational order parameter tensor S should be derived. This tensor is defined
as the ensemble average of the dyadic product of the unit vector û that specifies the orientation
of a rod,

S(t) ≡ < û û > (t) . (2)

The largest eigenvalue λ of the orientational order parameter tensor quantifies the degree of
alignment of the rods. In the isotropic phase λ = 1/3 while in a perfectly aligned state λ =
1. The concentration dependence of the order parameter (without the electric field) is most
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conveniently understood on the basis of the bifurcation diagram given in Fig.3. The values of
the effective concentration (L/deff )φeff where the isotropic-nematic binodals and spinodals are
located, according to Onsager [26, 27], are given on the lower axis of the bifurcation diagram. Here,

C
(−)
bin and C

(+)
bin are the lower and upper binodal concentrations. For initial overall concentrations in

between the two binodal concentrations, the equilibrium state is a coexistence between an isotropic
and nematic phase. For concentrations below C

(−)
bin the isotropic phase is stable, and above C

(+)
bin

the nematic phase is stable. The spinodal concentrations C
(±)
spin relate to the stability of the uniform

isotropic and nematic state. The spinodal concentration C
(+)
spin marks the concentration where a

uniform isotropic state becomes unstable against the uniform nematic state upon increasing the
concentration. The vertical dashed arrow in Fig.3 depicts the temporal increase of the orientational
order parameter towards the nematic branch (the solid line in blue). On lowering the concentration

of a uniform nematic below the spinodal concentration C
(−)
spin, the nematic becomes unstable against

the isotropic state. The order parameter of the uniform nematic state now decreases towards 1/3.
We thus find that the uniform nematic is unstable for effective concentrations (L/deff )φeff <

C
(−)
spin, while the uniform isotropic state is meta-stable for concentrations (L/deff )φeff < C

(+)
spin, as

indicated in Fig.3. The red, closed curve depicts the limit cycle corresponding to the alternating
crossing of the lower binodal in the dynamical state under the action of an electric field. Hence,
melting of the nematic state occurs from the unstable state, through spinodal decomposition. The
isotropic state grows from the meta-stable state, through nucleation and growth. Nucleation times
in the present case are probably small, as there is some reminiscent alignment after melting.

In order to quantify the dynamics of melting and forming of nematic domains in the dynamical
state, according to the above discussion, we need two equations of motion for the orientational
order parameter tensor (2): one equation of motion for spinodal melting of the nematic state when

(L/deff )φeff < C
(−)
bin , and one for nucleation and growth of the nematic from an (near-) isotropic

state when (L/deff )φeff > C
(−)
bin .

An equation of motion for spinodal decomposition of a nematic state can be derived from the
Smoluchowski equation, through a Ginzburg-Landau expansion upto fourth order in the orienta-
tional order parameter. Such a Ginzburg-Landau expansion can only be employed to describe the
kinetics of an initially unstable state, and therefore describes melting of the nematic, as discussed
above. For frequencies of the external field that are sufficiently large that during a cycle of the field
the configuration of the rods is essentially unchanged (for the fd-suspensions under consideration
this frequency is about 50−100Hz), an equation for the orientational order parameter tensor can
be derived from the Smoluchowski equation [9, 10]. This equation of motion can be written as a
sum of various contributions,

∂ S

∂ τ
= ∆id +∆Q,hc +∆twist +∆pol +∆torque , (3)

with the dimensionless time variable,

τ = Dr t ,

where Dr is the free rotational diffusion coefficient. The various contributions are as follows. First
of all, ∆id is the contribution from free diffusion,

∆id = 6
[

1
3 Î − S

]
.
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The second contribution ∆Q,hc stems from interactions, unperturbed by the external field, with
an effective hard-core diameter that accounts for the above discussed electrostatic interactions, as
indicated by the subscript ”Q”,

∆Q,hc =
9

2

L

deff
φeff {S · S− SS : S } .

The third contribution ∆twist is the twist contribution,

∆twist = − 9

2

[
5

4
− ln 2

]
1

κ deff

L

deff
φeff {S · S− SS : S } .

This contribution describes the effect, referred to as ”the twist effect” [28, 29], that there is a
preference for a non-parallel, twisted orientation of two rods due to the energetically unfavorable
overlap of diffuse double layers in parallel orientation. The contribution ∆pol is the contribution
due to interactions from polarization charges,

∆pol =
7

60

[
KE

KQ

]2
1

κ deff

L

deff
φeff h(Ω) E4

0

(
S : Ê0Ê0

)
F(S, Ê0) ,

while ∆torque accounts for single-particle torques with which the external field acts on polarization
charges,

∆torque =
1

80

L

lB
F̃ I(Ω) E2

0 F(S, Ê0) ,

where E0 is the dimensionless external field strength (with β = 1/kBT , and E0 the external field
strength),

E0 = β eLE0 , (4)

and F(S, Ê0) is an abbreviation for,

F(S, Ê0) ≡ 3
2 S · Ê0Ê0 +

3
2 Ê0Ê0 · S+ S · S · Ê0Ê0

+ Ê0Ê0 · S · S− 2S · Ê0Ê0 · S− 3SS : Ê0Ê0 ,

with Ê0 is the unit vector in the direction of the external field. The frequency-dependent functions
appearing in the above equations are,

h(Ω) =

[
1

Ω

sin{Ω}+sinh{Ω}
[cos{2Ω}+cosh{2Ω}]2

]2[
1+ 4

3Ω
4+ 2

5Ω
8
]
,

I(Ω) =
1

2Ω3

sinh{2Ω} − sin{2Ω}
cosh{2Ω}+ cos{2Ω}

,

where [31],

Ω =

√
ω L2

8Deff

,
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is a dimensionless frequency, with ω the frequency of the external field, and with Deff the effective
translational diffusion coefficient of the condensed ions, which is equal to,

Deff = D [ 1 + 2κc aK(κ a) ] , (5)

where D is the free translational diffusion coefficient of condensed ions. The second term within
the square brackets accounts for the repulsive interactions between the condensed ions, with,

κc =
2 lB
dL

Nc ,

the inverse ”condensate length”. The frequency dependent functions h(Ω) and I(Ω) are essentially
zero for Ω > 3, for which the polarization of the layer of condensed ions ceases to occur. At that
frequency the H-phase becomes the stable phase, as discussed in section 2. The constants KE

and F̃ are equal to [9, 10, 31],

KE =
π exp{κ d}

2 (1 + κ a)2 (1 + 2 kc aK(κ a))2
lB
κL2

N2
c ,

F̃ = V (κca) [W (κca, κa) + 1 ]×
{
2 [ 1 + κc aB(κ a)]2 − κc a [ 1 + κc aB(κ a) ]

}
,

with a = d/2 the hard-core radius, and where V and W stand for,

V (κca) =
κc a

( 1 + κc aB(κ a))2
,

W (κca, κa) = − 2κc aK(κ a)

1 + 2κc aK(κ a)
,

with (K0 is the modified Bessel function of the second kind of zeroth order),

K(κ a) ≡ 1

2 π

∫ 2π

0

dφ K0

(
κ a

√
2 (1− cosφ)

)
,

B(κ a) ≡ 1

π

∫ 2π

0

dφ cos{φ}K0

(
κ a

√
2(1−cosφ)

)
.

An equation of motion for the nucleation and growth of a nematic domain from the isotropic
state requires the solution of the Smoluchowski equation including all orders of the orientational
order parameter, as well as the spatial dependence of the orientational order parameter tensor.
This is a problem that is probably too complicated to allow for an analytical treatment. We
therefore adopt the exponential growth that is found in simulations [32],

∂ S

∂ τ
=

S̄− S

T
+∆pol +∆torque , (6)

where S̄ is the order parameter tensor of the nematic phase in equilibrium, without the electric
field, and where T is the time scale on which the internal orientational order of domains increases.
The last term is responsible for the orientation of the nematic director towards the electric-field
direction, which is an essential ingredient for the existence of the dynamical state.
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We note that both equations of motion (3,6) neglect the finite size of nematic domains. Spatial
variation of the orientational order parameter is not considered here. This is probably a reasonable
approximation in view of the quite fuzzy interface between the nematic and isotropic regions, as
evidenced from microscopy images. On the other hand, the dynamics of a given domain might be
affected by adjacent domains.

An oscillatory state is only found when dissociation/association of condensed ions is included.
In Ref.[9] the following semi-empirical equation of motion for the number Nc of condensed ions is
proposed,

dNc

dτ
= ±Cd

{
N2

c −N2
lim

}( z2lB
L [1+2κc aK(κ a)]

)2

×E2
0

(
Ê0Ê0 :

[
S(t)− αthr Î

] )
I(Ω) , (7)

where Cd is the ”effective dissociation constant”. Dissociation occurs only when there is sufficient
polarization of the layer of condensed ions along the long axis of the rod, which requires a minimum
component of the orientation of a rod along the external field. The number αthr thus specifies
the minimum value of the orientation along the field direction upon which dissociation can occur.
When (S : Ê0Ê0) > αthr dissociation occurs (and the ”− ” in eq.(7) applies), whenever the actual
number of condensed ions is larger than the limiting number of condensed ions Nlim, which is
given by,

Nlim =
αlim Nc, 0

αlim + E2
0

(
Ê0Ê0 : S

)
I(Ω)

, when , (S : Ê0Ê0) > αthr . (8)

This is the limiting, time averaged number of condensed ions in the stationary state when a rod
with a fixed orientation is subjected to the external field for a long time. When, on the other
hand, (S : Ê0Ê0) < αthr (and the ”+ ” applies), association of condensed ions occurs, and,

Nlim = Nc,0 , when , (S : Ê0Ê0) < αthr ,

where, as before, Nc,0 is the number of condensed ions in the absence of the external field (note
that Nlim ≤ Nc,0).

It takes some time before the ion-concentration within the bulk of the solvent is affected by
the dissociation or association of condensed ions. Ions that dissociate from the condensed layer
must diffuse over distances of the order of a rod length, in order to change the bulk ionic strength.
Similarly, it takes some time for ions to diffuse from the bulk to the condensed layer as association
occurs. The change of the bulk concentration of ions at time t is thus approximately proportional
to the number ∆Nc = Nc, 0 − Nc of released ions at an earlier time t − τdif , where τdif is the
time required for ions to diffuse over distances of the order of a rod length. The time-dependent
(inverse) Debye length at time t is therefore taken equal to 1,

κ(t) =

√
β e2 [ 2 c0 + ρ̄∆Nc(t− τdif ) ]

ϵ
, (9)

1Note that there is a misprint in eq.(48) in Ref.[9]
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Figure 4: The lower (a) and upper (b) binodal and spinodal concentrations, as a function of the
Debye length for several values of the number of effective charges N0 − Nc,0. Dashed lines are
spinodals and solid lines are binodals.

where ρ̄ is the number density of rods, and c0 is the ambient ionic strength,

c0 =
1

2

∑
α

cα z
2
α ,

where the summation ranges over all species of ions in bulk solution, and cα is the number
concentration of species α (with valency zα), in the absence of the electric field. Therefore, the
effective diameter in eq.(1) becomes time-dependent,

deff (t)

d
=

1

κ(t) d
[ ln{KQ(κ ≡ κ(t))}+ γE ] ,

where the interaction strength KQ is evaluated with an inverse Debye length equal to κ(t). This
time dependence quantifies the variation of the effective concentration upon dissociation/association
of condensed ions, which is at the origin of the dynamical state.

11



4 Binodal- and Spinodal Concentrations

As a last step, we have to specify the lower binodal concentration C
(−)
bin in order to decide whether

eq.(3) or eq.(6) should be used to describe the dynamics of the order parameter. It turns out that
the external electric field has a very minor effect on the concentration where the isotropic-nematic
phase transition line is located. The location of the lower binodal concentration, including the twist
effect, can therefore simply be obtained from the corresponding the dimensionless concentration
(L/d)φ = 3.290 · · · for hard-spheres, as predicted by Onsager [26, 27]. This relies on the fact
that in the equation of motion (3) the charge-charge interactions as well as the twist effect have
the same functional dependence on the orientational order parameter tensor. The lower binodal
concentration is thus set by,[

L

d
φ

]
Onsager

= 3.290 · · · =
L

deff
φeff

{
1−

[
5

4
−ln 2

]
1

κ deff

}
. (10)

The same procedure can be used to obtain the location of the upper binodal and two spinodal
concentrations. The Onsager value of (L/d)φ for the upper binodal is 4.191, and for the lower
and upper spinodal 3.556 and 4, respectively. The location of binodals and spinodals depend both
on the Debye screening length, as well as the effective number of surface charges N0 − Nc,0 (as
before, N0 is the total number of immobile bare charges on a single rod, and Nc,0 is the number
of condensed ions in the absence of the external electric field). The plots in Fig.4 give the binodal
and spinodal concentrations as a function of the Debye length for several values of the effective
number of charges.

The predicted isotropic-nematic coexistence regions for N0 − Nc,0 = 500 (a number that is
found from fits to the location of the N∗-to-D transition line, as discussed in the next section) are
1.68 < [fd] < 2.14 mg/ml and 0.66 < [fd] < 0.84mg/ml for buffer concentrations of 0.16 mM and
0.032 mM , respectively. The experimental binodal concentrations are 1.5±0.2 and 3.4±0.5 mg/ml
for the 0.16 mM buffer, and 0.8 ± 0.2 and 1.5 ± 0.4 mg/ml for the 0.032 mM buffer. The
lower binodal concentrations are in very good agreement, while the experimental upper binodal
concentrations are slightly higher than the theoretically predicted values.

5 Comparison to Experiments

In a comparison to experiments, the volume fraction φ must be calculated from the weight con-
centration of fd-virus particles. From the length, thickness and molecular weight of a fd-virus
particle, the relation between the hard-core volume fraction and the weight concentration [fd] in
units of mg/ml is found to be: φ = 0.0011 × [fd]. In addition, the dimensionless electric field
amplitude (4) is calculated from E0 = 0.096× 0.035×E0[V/mm], where the factor 0.096 accounts
for the reduction of the applied field strength E0 due to the dielectric polarization of the ITO-
water interface. The data that will be shown are corrected for the decrease of the electric field
strength in the bulk of the suspensions due to the partial buildup of electric double layers at the
electrodes, also known as ”electrode polarization” [8]. Electrode polarization is essentially absent
for frequencies ν = ω/2π larger than about 60 and 120Hz for the buffer concentrations 0.16mM
and 0.032mM , respectively.

There are a number of parameters in the dissociation/association model of which the numerical
values have to specified. Some of these parameters can be specified independently, while others
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have to be adjusted to fit experimental data. Table I shows the parameters that are determined
independently for the two buffer concentrations of 0.032mM and 0.16mM . The pH and ionic
strength c0 are calculated from the buffer concentrations, including the contribution from carbon
dioxide that dissolves from the air, as discussed in Ref.[25]. The Debye length κ−1 (at 25 oC)
is calculated from the ionic strength: κ−1 [nm] = 0.304/

√
c0 [M ]. The number N0 of immobile

charges on a fd-virus particle depends on the pH through the dissociation/association of surface
groups on the coat proteins, which can be obtained from Ref.[24]. The orientational order pa-
rameter within the full nematic state is measured as a function of the buffer concentration in
Ref.[25], down to a buffer concentration of 0.16mM . Extrapolation of the scalar order parameter
to the upper-binodal concentration gives the scalar orientational order parameter that is relevant
in eq.(6). The scalar order parameter is essentially the same for the two buffer concentrations, and
is equal to 0.93±0.02 (a plot of the scalar order parameter versus the buffer concentration from the
data in Ref.[25] shows that the difference of the order parameter for the two buffer concentrations
is less than 0.01). The order parameter tensor S̄ in eq.(6) is thus equal to 0.93× Ê0Ê0.

5.1 The location of the N∗-to-D transition line

The location of the N∗-to-D transition line is independent of the numerical values of the dynamical
parameters T (which sets the nematic growth rate from the meta-stable state), Cd (the effective
dissociation constant), τdif (the time condensed ions need to diffusive into the bulk), and αthr (that
sets the degree of alignment beyond which dissociation occurs). The three remaining parameters
that determine the location of N∗-to-D transition lines are: (i) the number Nc,0 of condensed
ions in equilibrium, without the electric field, (ii) αmin in eq.(8), which determines the remaining
limiting number of condensed ions on a rod with a fixed orientation as a function of the electric
field amplitude and frequency, and (iii) the diffusion coefficient of the condensed ions in eq.(5).
The experimental phase-state diagrams for the buffer concentrations [b] = 0.16mM and 0.032mM
are given in Figs.5 and 6, respectively. The solid red lines are the theoretical N∗-to-D transition
lines for the values of Nc,0, αlim, and D/D0 as given in Table II (with D0 = 2.0 × 10−9m2/s
the typical value of diffusion coefficients of ions in solution). The reduction of the bare diffusion
coefficient is due to additional friction of ions with the core of the rod, which is independent of ion
concentration. The grey areas in these plots indicate the range of validity of the present theory:
the frequency should larger than about 50 − 100Hz due to the assumed constant orientation of
the rods during a cycle of the external electric field, and should not be larger than about 300Hz
where polarization is essentially absent and hydrodynamic interactions through electro-osmotic
flow become significant.

In particular for the lower ionic strength, there are two counter balancing effects on the location
of the N∗-to-D transition line as the fd-concentration is increased. For a given frequency the
transition shifts to a higher field amplitude on increasing the fd-concentration, since the increase
of the ionic strength due to the dissociation of condensed ions must be larger, as the concentration
is further away from the lower-binodal concentration. On the other hand, the required number
of released condensed ions per individual rod becomes less on increasing the fd-concentration, as
there are more rods per unit volume at a higher concentration, which lowers the field amplitude
where the transition occurs. As can be seen from Figs.5,6, the field amplitude where the transition
occurs increases with increasing fd-concentration. The above mentioned former mechanism wins
over the latter, which is reproduced by the theory.
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Table I : Independent numerical parameter values
for the two buffer concentrations.

Conc.[mM ] pH c0 [mM ] κ−1 [nm] N0 S̄

0.032 5.8 0.032 53.7 7800 0.93

0.16 6.9 0.143 25.4 8700 0.93

Table II : Fitted numerical parameter values
for the two buffer concentrations.

Conc.[mM ] Nc,0 αlim D/D0 αthr T Cd τdif

0.032 7300 1.0× 10−5 1/350 − − − −

0.16 8200 2.2× 10−4 1/350 1/2 65 105 0.039 s
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Figure 5: The phase/state diagrams for the buffer concentration of 0.16 mM for several fd-
concentrations, as indicated in the figures. The red lines are the calculated N∗-to-D transition
lines, the thin black lines are guides-to-the-eye, and the vertical red line in the second figure
indicates the location of the critical point. The red and blue areas are outside the validity of the
theory.
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Figure 6: The same as in Fig.5, but now for a buffer concentration of 0.032 mM .
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Since the bare charge for the two different values of the pH for the two buffer concentrations
of 0.032 and 0.16mM is equal to 7800 and 8700, respectively [24], the equilibrium number of
condensed ions, in the absence of the external electric field, is found to be equal to N0−Nc,0 = 500
for both buffer concentrations (see Table II). The corresponding equilibrium line-charge density is
about a factor of two less than the classical predicted value from condensation theory of e/lB ≈
1100 (where e is the elementary charge and lB = 0.75nm is the Bjerrum length) [33, 34]. The
parameter αmin, on the contrary, is a strong function of the buffer concentration, as can be seen
from Table II. This implies that the limiting number of condensed ions on a rod with a fixed
orientation under the action of an electric field strongly depends on the bulk ionic strength (see
eq.(8)), in contrast to the number of condensed ions in the absence of the electric field.

5.2 The dynamical behaviour on approach of the N ∗-to-D transition
line

The remaining parameters that affect the dynamical behaviour are: (i) the growth time T in
eq.(6) of the isotropic meta-stable state towards the nematic state, (ii) the effective dissociation
constant Cd of condensed ions in eq.(7), (iii) the time τdif that determines how long ions need
to diffuse into the bulk in order to affect the overall ionic strength, and (iv) the threshold value
αthr that sets the degree of alignment along the electric field beyond which dissociation occur.
The critical exponents that quantify the divergence of the characteristic melting/forming time τ
of nematic domains on approach of the N∗-to-D transition line turn out to be quite independent
of the precise values of Cd, τdif , and αthr. Reasonable agreement with experiments is found for
the parameters given in table II. The tabulated time for τdif corresponds to the time required for
ions in solution (with a diffusion coefficient of 2 × 10−9 m2/s) to diffuse over a distance of ten
rod lengths, which seems a reasonable distance in order that dissociated condensed ions affect the
bulk ionic strength. The dimensionless, numerical value of T was adjusted such that the limiting
characteristic time of approximately 1.5 s far away from the transition line is reproduced by the
theory. The tabulated value of T corresponds to a real time of 65/Dr = 3.3 s for the growth rate of
a nematic domain, which is of the order of magnitude seen experimentally in fd-virus suspensions.

Figure 7 gives a comparison between the present theory with the above mentioned numerical
values of the parameters and the experiments from Ref.[11], where the divergence of the character-
istic time on approach of the N∗-to-D transition line has been measured. Figure 7a is a schematic
overview of the experimentally found behaviour of the characteristic time [11]: on approach of
the critical point by lowering the field-amplitude at the critical frequency a power-law divergence
is found with a critical exponent of µE = 1.39 ± 0.18 (see the data points in Fig.7b), while an
exponent of µν = 0.65±0.15 is found on approach of the critical point on increasing the frequency
(see Fig.7c), and a logarithmic divergence is found for an off-critical approach of the N∗-to-D
transition line (as shown in Fig.7d). The critical exponent µE

τ is defined as,

τ − τb ∼
(
E

Ec

− 1

)−µE
τ

, (11)

for the critical divergence of the characteristic time τ on lowering the field amplitude at the critical
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Figure 7: The divergence of the characteristic time for melting and forming of nematic domains in
the dynamical state. (a) A schematic of the experimentally found divergence of the characteristic
time on approach of the N∗-to-D transition line: a power law divergence is found on approach
of the critical point (with an exponent of 1.39± 0.18 on lowering the amplitude, and 0.65± 0.15
on increasing the frequency), while a logarithmic divergence is found for an off-critical approach.
(b) The divergence as a function of the electric-field amplitude at the critical frequency νc, and
(c) as a function of the frequency at the critical field amplitude Ec. (d) The divergence for the
off-critical approach at a fixed frequency of 150Hz, where Etrans is field strength at the transition
line. The data points are taken from Ref.[11], for an fd-concentration of 2.0mg/ml, with a buffer
concentration of 0.16mM . The dashed lines are the predictions by theory. The numbers in the
figures are values for the critical exponents.

frequency νc (Fig.7b), and similarly,

τ − τb ∼
(
1− ν

νc

)−µν
τ

, (12)

on increasing the frequency at the critical field amplitude Ec (Fig.7c). Here, τb is the non-critical
background value of the characteristic time of about 1.5 s far away from the critical point. The
theory also predicts a power-law divergence, with exponents equal to µE

τ = 0.89 (instead of the
experimental value 1.39± 0.18), and µν

τ = 0.91 (instead of 0.65± 0.15). It was not possible to find
parameters such that the experimentally found critical exponents are accurately reproduced by
the theory. The differences between the theoretical predictions and the experimental results for
the values of the critical exponents is most probably due to the fact that interactions between rods
due to electro-osmotic flow come into play. A power-law divergence is also predicted by theory
for off-critical approaches of the D-to-N∗ transition line, with a similar exponent 0.98 as for the
critical approaches. The experiments reveal, on the contrary, a logarithmic divergence,

τ − τb ∼ 10log

(
E

Etrans

− 1

)
, (13)

where Etrans is the location of the transition line for a fixed frequency of 150Hz. This discrepancy
might be due to the interactions between neighbouring nematic domains.

In order to reproduce the experimentally found critical exponents accurately, the theory should
be improved to include inter-rod interactions due to field-induced electro-osmotic flow (for the
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critical approach), the existence of domain boundaries and interactions between domains (for the
off-critical approach).

6 Summary and Conclusions

The phase/state behaviour of concentrated suspensions of highly charged rods (fd-virus particles)
have been investigated experimentally in Ref.[8], where a dynamical state (theD-state) is identified
in which nematic domains persistently melt and form. The time scale on which melting and
forming of the domains occurs is about 1.5 s far away from the transition line where the quiescent
chiral-nematic/isotropic coexistent state (the N∗-phase) transforms to the dynamical state. On
approach of the N∗-to-D transition line, the characteristic time for domain melting and forming
is found experimentally to diverge [11]. The origin of the dynamical state is attributed to cyclic
dissociation and association of condensed ions which leads to an alternating increase and decrease
of the Debye screening length [9] (with a corrigendum in Ref.[10]). This in turn leads to an
alternating, time-dependent effective thickness of the rods, such that the lower isotropic-nematic
binodal is alternatingly crossed.This leads to the observed cyclic melting and forming of nematic
domains.

There are three coupled equations of motion involved in the theory for the dynamical state:
(A) an equation of motion for melting of the unstable nematic, (B) for the meta-stable growth
of the (near-) isotropic state, and (C) for the number of condensed ions. The apriori unknown
variables which enter these equations of motion are the number of condensed ions [in (A), (B), and
(C)], the free diffusion coefficient of the condensed ions [in (A)], the time constant for the growth
of the nematic phase [in (B)], the limiting number of condensed ions after a rod with fixed orien-
tation is subjected for a long time to the oscillating field, the effective condensed-ion dissociation
constant, and the threshold value for the orientation of a rod along the external field beyond which
dissociation occurs [in (C)]. It turns out that the numerical results are relatively insensitive to the
effective condensed-ion dissociation constant and the threshold value of orientation beyond which
dissociation is possible. Independent of the three equations of motion, the time that is required
for ions to diffuse from (or to) the layer of condensed ions into (or from) the bulk solution is an
additional variable.

A few approximations are made in the theory: (i) during a cycle of the external electric field, the
configuration of the rods is assumed to remain essentially unchanged, (ii) the finite size of domains
is not considered, that is, the theory applies to a homogeneous system, (iii) the rod-rod interactions
through field-induced electro-osmotic flow is neglected, and (iv) a semi-empirical expression for
the field-induced dissociation/association of condensed ions is proposed. The first assumption
(i) limits the validity of the theory to frequencies larger than approximately 100Hz for the fd-
virus particles under consideration, while assumption (iii) limits the validity to frequencies lower
than the critical frequency. Above the critical frequency polarization is essentially absent. The
homeotropic H-phase that is formed at these higher frequencies is stabilized due to hydrodynamic
interactions mediated by field-induced electro-osmotic flow.

Experimental phase/state diagrams for various fd-concentrations and ionic strengths are pre-
sented, and the location of the D-to-N∗ transition line is compared with the above mentioned
theory [9, 10]. In view of the approximate nature of the theory, the location of the D-to-N∗ tran-
sition lines in the field-amplitude versus frequency plane are reasonably well reproduced within
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the frequency range where the theory applies. The location of the transition lines as a function
of fd-concentration and the buffer concentration (or ionic strength) are captured by the theory.
Especially the subtle dependence of the location of the transition lines on the fd-concentration
is captured, where there are two counter acting effects: on increasing the fd-concentration, the
location of the transition line shifts to higher field strengths as the difference in concentration
with the lower-binodal concentration increases, but at the same time the field strength tends to
decrease because the number of ions that should be released per rod becomes less as more rods
are present. The critical divergence of the characteristic time for melting and forming of domains
is also found by the theory. However, the theoretical values for critical exponents on approach
of the critical point are somewhat different from those found experimentally. Moreover, for an
off-critical approach of the transition line a power-law divergence is predicted by the theory while
a logarithmic divergence is observed experimentally. The former difference is most probably due
to the increasing importance of interactions due to electro-osmotic flow, while the latter might be
due to the interactions between domains, which are not included in the theory.

The most significant challenge to improve the theory is a quantitative description of field-
induced dissociation/association of condensed ions. As mentioned above, the semi-empirical
equation of motion for the number of condensed ions contains as many as three apriori unknown
variables. The solution of the non-linear Poisson-Boltzmann equation for rod-like colloids in an
oscillatory external electric field would not only more precisely quantify an equation of motion for
the number of condensed ions, but also reduce the number of unknown variables. Secondly, the
present theory assumes a homogeneous nematic, and thus neglects the finite size of the nematic
domains. The analysis of the Smoluchowski equation could possibly be extended to include spatial
inhomogeneities of the orientational order parameter.
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