000279307 001__ 279307
000279307 005__ 20210129221033.0
000279307 0247_ $$2doi$$a10.1021/acs.jpclett.5b01122
000279307 0247_ $$2Handle$$a2128/9564
000279307 0247_ $$2WOS$$aWOS:000357626700040
000279307 0247_ $$2altmetric$$aaltmetric:4188961
000279307 0247_ $$2pmid$$apmid:26167255
000279307 037__ $$aFZJ-2015-07322
000279307 082__ $$a530
000279307 1001_ $$0P:(DE-Juel1)145225$$aLiao, Qinghua$$b0$$ufzj
000279307 245__ $$aDevelopment and Application of a Nonbonded Cu $^{2+}$ Model That Includes the Jahn–Teller Effect
000279307 260__ $$aWashington, DC$$bACS$$c2015
000279307 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449731689_5833
000279307 3367_ $$2DataCite$$aOutput Types/Journal article
000279307 3367_ $$00$$2EndNote$$aJournal Article
000279307 3367_ $$2BibTeX$$aARTICLE
000279307 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279307 3367_ $$2DRIVER$$aarticle
000279307 520__ $$aMetal ions are both ubiquitous to and crucial in biology. In classical simulations, they are typically described as simple van der Waals spheres, making it difficult to provide reliable force field descriptions for them. An alternative is given by nonbonded dummy models, in which the central metal atom is surrounded by dummy particles that each carry a partial charge. While such dummy models already exist for other metal ions, none is available yet for Cu2+ because of the challenge to reproduce the Jahn–Teller distortion. This challenge is addressed in the current study, where, for the first time, a dummy model including a Jahn–Teller effect is developed for Cu2+. We successfully validate its usefulness by studying metal binding in two biological systems: the amyloid-β peptide and the mixed-metal enzyme superoxide dismutase. We believe that our parameters will be of significant value for the computational study of Cu2+-dependent biological systems using classical models.
000279307 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000279307 588__ $$aDataset connected to CrossRef
000279307 7001_ $$0P:(DE-HGF)0$$aKamerlin, Shina Caroline Lynn$$b1
000279307 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b2$$eCorresponding author$$ufzj
000279307 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.5b01122$$gVol. 6, no. 13, p. 2657 - 2662$$n13$$p2657 - 2662$$tThe @journal of physical chemistry letters$$v6$$x1948-7185$$y2015
000279307 8564_ $$uhttps://juser.fz-juelich.de/record/279307/files/Development%20and%20Application%20of%20a%20Nonbonded%20Cu%202%2B%20Model%20That%20Includes%20the%20Jahn%E2%80%93Teller%20Effect.pdf$$yOpenAccess
000279307 8564_ $$uhttps://juser.fz-juelich.de/record/279307/files/Development%20and%20Application%20of%20a%20Nonbonded%20Cu%202%2B%20Model%20That%20Includes%20the%20Jahn%E2%80%93Teller%20Effect.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000279307 909CO $$ooai:juser.fz-juelich.de:279307$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000279307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145225$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000279307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000279307 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000279307 9141_ $$y2015
000279307 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279307 915__ $$0LIC:(DE-HGF)PublisherOA$$2HGFVOC$$aFree to read
000279307 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2014
000279307 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2014
000279307 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279307 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000279307 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279307 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000279307 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000279307 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000279307 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000279307 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279307 920__ $$lyes
000279307 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000279307 9801_ $$aUNRESTRICTED
000279307 9801_ $$aFullTexts
000279307 980__ $$ajournal
000279307 980__ $$aVDB
000279307 980__ $$aUNRESTRICTED
000279307 980__ $$aI:(DE-Juel1)ICS-6-20110106
000279307 981__ $$aI:(DE-Juel1)IBI-7-20200312