000279321 001__ 279321
000279321 005__ 20240619091156.0
000279321 0247_ $$2doi$$a10.1021/acs.langmuir.5b02833
000279321 0247_ $$2ISSN$$a0743-7463
000279321 0247_ $$2ISSN$$a1520-5827
000279321 0247_ $$2WOS$$aWOS:000362920900005
000279321 037__ $$aFZJ-2015-07336
000279321 041__ $$aEnglish
000279321 082__ $$a670
000279321 1001_ $$0P:(DE-HGF)0$$aSchmitt Pauly, Céline$$b0
000279321 245__ $$aSimultaneous Phase Transfer and Surface Modification of TiO 2 Nanoparticles Using Alkylphosphonic Acids: Optimization and Structure of the Organosols
000279321 260__ $$aWashington, DC$$bACS Publ.$$c2015
000279321 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1454336021_19494
000279321 3367_ $$2DataCite$$aOutput Types/Journal article
000279321 3367_ $$00$$2EndNote$$aJournal Article
000279321 3367_ $$2BibTeX$$aARTICLE
000279321 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279321 3367_ $$2DRIVER$$aarticle
000279321 500__ $$a"final draft post referee" kann nicht beigebracht werden
000279321 520__ $$aAn original protocol of simultaneous surface modification and transfer from aqueous to organic phases of anatase TiO2 nanoparticles (NPs) using alkylphosphonic acids (PAs) is studied. The influence of the solvent, the nature and concentration of the PA, and the size, concentration, and aggregation state of the TiO2 NPs was investigated. Complete transfer was observed for linear alkyl chains (5, 8, 12, and 18 C atoms), even at very high sol concentrations. After transfer, the grafted NPs were characterized by 31P solid-state MAS NMR. The dispersion state of NPs before and after phase transfer was monitored by dynamic light scattering (DLS). Small-angle neutron scattering (SANS) was used to characterize the structure of PA-grafted NPs in the organic solvent. Using a quantitative core–shell model cross-checked under different contrast conditions, it is found that the primary particles making up the NPs are homogeneously grafted with a solvated PA-layer. The nanometric thickness of the latter is shown to increase with the length of the linear carbon chain of the PA, independent of the size of the primary TiO2 NP. Interestingly, a reversible temperature-dependent aggregation was evidenced visually for C18PA, and confirmed by DLS and SANS: heating the sample induces the breakup of aggregates, which reassemble upon cooling. Finally, in the case of NPs agglomerated by playing with the pH or the salt concentration of the sols, the phase transfer with PA is capable of redispersing the agglomerates. This new and highly versatile method of NP surface modification with PAs and simultaneous transfer is thus well suited for obtaining well-dispersed grafted NPs.
000279321 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000279321 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000279321 588__ $$aDataset connected to CrossRef
000279321 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000279321 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000279321 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x1
000279321 65017 $$0V:(DE-MLZ)GC-150-1$$2V:(DE-HGF)$$aKey Technologies$$x0
000279321 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000279321 7001_ $$0P:(DE-HGF)0$$aGenix, Anne-Caroline$$b1
000279321 7001_ $$0P:(DE-HGF)0$$aAlauzun, Johan G.$$b2
000279321 7001_ $$0P:(DE-HGF)0$$aGuerrero, Gilles$$b3
000279321 7001_ $$0P:(DE-Juel1)130507$$aAppavou, Marie-Sousai$$b4$$ufzj
000279321 7001_ $$0P:(DE-HGF)0$$aPérez, Javier$$b5
000279321 7001_ $$0P:(DE-HGF)0$$aOberdisse, Julian$$b6
000279321 7001_ $$0P:(DE-HGF)0$$aMutin, P. Hubert$$b7$$eCorresponding author
000279321 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.5b02833$$gVol. 31, no. 40, p. 10966 - 10974$$n40$$p10966 - 10974$$tLangmuir$$v31$$x1520-5827$$y2015
000279321 8564_ $$uhttps://juser.fz-juelich.de/record/279321/files/acs%252Elangmuir%252E5b02833.pdf$$yRestricted
000279321 8564_ $$uhttps://juser.fz-juelich.de/record/279321/files/acs%252Elangmuir%252E5b02833.gif?subformat=icon$$xicon$$yRestricted
000279321 8564_ $$uhttps://juser.fz-juelich.de/record/279321/files/acs%252Elangmuir%252E5b02833.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000279321 8564_ $$uhttps://juser.fz-juelich.de/record/279321/files/acs%252Elangmuir%252E5b02833.jpg?subformat=icon-180$$xicon-180$$yRestricted
000279321 8564_ $$uhttps://juser.fz-juelich.de/record/279321/files/acs%252Elangmuir%252E5b02833.jpg?subformat=icon-640$$xicon-640$$yRestricted
000279321 8564_ $$uhttps://juser.fz-juelich.de/record/279321/files/acs%252Elangmuir%252E5b02833.pdf?subformat=pdfa$$xpdfa$$yRestricted
000279321 909CO $$ooai:juser.fz-juelich.de:279321$$pVDB$$pVDB:MLZ
000279321 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130507$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000279321 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000279321 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000279321 9141_ $$y2015
000279321 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279321 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2014
000279321 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279321 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000279321 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279321 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000279321 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000279321 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000279321 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000279321 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000279321 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000279321 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279321 920__ $$lyes
000279321 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000279321 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000279321 980__ $$ajournal
000279321 980__ $$aVDB
000279321 980__ $$aUNRESTRICTED
000279321 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000279321 980__ $$aI:(DE-Juel1)JCNS-1-20110106