001     279389
005     20210129221045.0
024 7 _ |a 10.1080/01411594.2014.1002784
|2 doi
024 7 _ |a 0141-1594
|2 ISSN
024 7 _ |a 1029-0338
|2 ISSN
024 7 _ |a WOS:000354456900004
|2 WOS
037 _ _ |a FZJ-2015-07401
082 _ _ |a 540
100 1 _ |a Bulavin, L. A.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Lyotropic model membrane structures of hydrated DPPC: DSC and small-angle X-ray scattering studies of phase transitions in the presence of membranotropic agents
260 _ _ |a London [u.a.]
|c 2015
|b Taylor & Francis
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1449760077_5833
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Multibilayer structures of hydrated phospholipids, often considered as model biological membranes, are, from the physical viewpoint, lyotropic liquid crystalline systems undergoing temperature-induced mesomorphic phase transitions. Effects of silver nitrate and urocanic acid on lyotropic phase states of hydrated L-α-dipalmitoylphosphatidylcholine (DPPC) have been studied by small-angle X-ray scattering and differential scanning calorimetry (DSC). Both methods show increase of the main phase-transition temperature (Tm) of hydrated DPPC upon introduction of AgNO3 or urocanic acid, decrease of pre-transition temperature (Tp) in the presence of urocanic acid and its increase in the presence of AgNO3. Thus, urocanic acid widened the ripple-phase temperature region. Silver nitrate caused the appearance of an additional high-temperature peak on DSC thermograms, evidencing phase separation in the system. Both agents caused minor effects on DPPC lipid bilayer repeat distance (D) in gel phase, but resulted in noticeable increase of D in the liquid crystal phase with temperature as compared to undoped DPPC structures.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Soloviov, D. V.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gordeliy, Valentin
|0 P:(DE-Juel1)131964
|b 2
|u fzj
700 1 _ |a Svechnikova, O. S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Krasnikova, A. O.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kasian, N. A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vashchenko, O. V.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lisetski, L. N.
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1080/01411594.2014.1002784
|g Vol. 88, no. 6, p. 582 - 592
|0 PERI:(DE-600)2022931-8
|n 6
|p 582 - 592
|t Phase transitions
|v 88
|y 2015
|x 1029-0338
909 C O |o oai:juser.fz-juelich.de:279389
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131964
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHASE TRANSIT : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21