001     279575
005     20240711092248.0
024 7 _ |a 10.1016/j.fuproc.2015.06.031
|2 doi
024 7 _ |a WOS:000362920200060
|2 WOS
037 _ _ |a FZJ-2015-07459
082 _ _ |a 660
100 1 _ |a Wu, Guixuan
|0 P:(DE-Juel1)145147
|b 0
|e Corresponding author
245 _ _ |a Viscosity Model for Oxide Melts Relevant to Fuel Slags. Part 2:The System SiO$_{2}$-Al$_{2}$O$_{3}$-CaO-MgO-Na$_{2}$O-K$_{2}$O"
260 _ _ |a New York, NY [u.a.]
|c 2015
|b Science Direct
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1449821312_10440
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The viscosity model recently developed for fully liquid pure oxides and binary systems is extended to describe the viscosity of multicomponent systems, based on the thermodynamic modified associate species model. In the model the viscosity is linked to the distribution of associate species as well as the connectivity of associate species. To describe the viscosity for multicomponent systems, the ternary associate species are introduced. The focus of the present paper is to describe the viscosity of the system SiO2–Al2O3–CaO–MgO–Na2O–K2O and its ternary or higher order subsystems. The model shows a good performance in describing the viscosity using only one set of model parameters, which all have a clear physico-chemical meaning. The viscosity behavior when substituting one network modifier for another at constant SiO2 contents is well described. The Al2O3-induced viscosity maximum is also well described, in which the position and magnitude of the viscosity maximum as a function of composition and temperature (charge compensation effect) are properly predicted. Another viscosity maximum when replacing Al2O3 with SiO2 for constant contents of the network modifiers is well presented. Moreover, the current model is self-consistent, in which the extension of viscosities from lower order systems to higher order systems works well, and vice versa.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Yazhenskikh, Elena
|0 P:(DE-Juel1)129813
|b 1
700 1 _ |a Müller, Michael
|0 P:(DE-Juel1)129765
|b 2
773 _ _ |a 10.1016/j.fuproc.2015.06.031
|0 PERI:(DE-600)1483666-x
|p 520-533
|t Fuel processing technology
|v 138
|y 2015
|x 0378-3820
856 4 _ |u https://juser.fz-juelich.de/record/279575/files/1-s2.0-S0378382015300576-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279575/files/1-s2.0-S0378382015300576-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279575/files/1-s2.0-S0378382015300576-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279575/files/1-s2.0-S0378382015300576-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279575/files/1-s2.0-S0378382015300576-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279575/files/1-s2.0-S0378382015300576-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:279575
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145147
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129813
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129765
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUEL PROCESS TECHNOL : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21