001     279586
005     20240709094313.0
024 7 _ |a 10.1179/0960340914Z.00000000080
|2 doi
024 7 _ |a WOS:000348713300013
|2 WOS
037 _ _ |a FZJ-2015-07470
082 _ _ |a 620
100 1 _ |a Niewolak, Leszek
|0 P:(DE-Juel1)129770
|b 0
|e Corresponding author
245 _ _ |a Oxidation and Reduction Kinetics of Iron and Iron Based Alloys Used as Storage Materials in High Temperature Battery
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1449824971_10439
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The background of the present studies relates to the development of a novel high temperature energy storage system based on a solid oxide cell. The energy is stored in a metal/metal oxide system which is part of the fuel side of the cell. The aim of the present study was to evaluate the suitability of pure iron and iron based model alloys as possible energy storage material for this type of high temperature battery system at a service temperature of 800°C. For this purpose the oxidation and reduction behaviour of iron in Ar–H2–(H2O) environments has been examined. The reduction process in Ar–2%H2 of the wüstite scale formed on pure iron in Ar–H2–H2O was hampered by the formation of a continuous, gas tight metallic iron layer on its surface. Possible approaches to increase oxidation and reduction kinetics by optimised alloy compositions for the Fe storage are discussed.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
700 1 _ |a Zurek, Joanna
|0 P:(DE-Juel1)129819
|b 1
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 2
700 1 _ |a Grüner, Daniel
|0 P:(DE-Juel1)145209
|b 3
700 1 _ |a Quadakkers, Willem J.
|0 P:(DE-Juel1)129782
|b 4
773 _ _ |a 10.1179/0960340914Z.00000000080
|0 PERI:(DE-600)2035150-1
|n 1-2
|p 81-91
|t Materials at high temperatures
|v 32
|y 2015
|x 0960-3409
909 C O |o oai:juser.fz-juelich.de:279586
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129770
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129819
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145209
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129782
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MATER HIGH TEMP : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21