000279591 001__ 279591
000279591 005__ 20240711092302.0
000279591 0247_ $$2doi$$a10.1016/j.jallcom.2015.03.076
000279591 0247_ $$2WOS$$aWOS:000353377500061
000279591 037__ $$aFZJ-2015-07475
000279591 082__ $$a670
000279591 1001_ $$0P:(DE-Juel1)129770$$aNiewolak, Leszek$$b0$$eCorresponding author
000279591 245__ $$aSigma-Phase Formation in High Chromium Ferritic Steels at 650°C
000279591 260__ $$aLausanne$$bElsevier$$c2015
000279591 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449824854_10438
000279591 3367_ $$2DataCite$$aOutput Types/Journal article
000279591 3367_ $$00$$2EndNote$$aJournal Article
000279591 3367_ $$2BibTeX$$aARTICLE
000279591 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279591 3367_ $$2DRIVER$$aarticle
000279591 520__ $$aA binary Fe–30 wt.%Cr alloy and corresponding ternary alloys containing manganese, molybdenum or tungsten were studied with respect to σ-phase formation at 650 °C. Although even after 3000 h exposure complete equilibration was not attained, the presence of tungsten and especially molybdenum was found to promote σ-phase formation. More extensive σ-phase formation was observed in the tungsten and especially in the molybdenum-containing alloys than in the binary and manganese-containing alloy. Apparently the bulk free energy decrease driving the nucleation of σ-phase is substantially larger when tungsten or molybdenum are present in the alloy.The presence of a nickel layer, to simulate the contact between ferritic steel interconnects and nickel mesh in a Solid Oxide Fuel Cell (SOFC) results in the formation of an austenitic zone and in accelerated formation of a σ-phase rich layer at the ferrite/austenite interface, due to interdiffusion processes. This interface acts as a highly efficient heterogeneity for the nucleation of σ-phase. The nucleation is enhanced by an increased Cr/Fe-ratio at that interface. Several possible modes for the growth of the σ layer were identified but the available experimental data were not sufficient to distinguish among these. The σ-rich layer, which appears to act as an interdiffusion barrier, is thicker in the case of the binary Fe–Cr and the Fe–Cr–Mn alloy than for the molybdenum- or tungsten-rich alloys.The results show that the stability range of σ-phase is larger than indicated by the presently used thermodynamic data bases.
000279591 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000279591 7001_ $$0P:(DE-HGF)0$$aGarcia-Fresnillo, L.$$b1
000279591 7001_ $$0P:(DE-HGF)0$$aMeier, G. H.$$b2
000279591 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, Willem J.$$b3
000279591 773__ $$0PERI:(DE-600)2012675-X$$a10.1016/j.jallcom.2015.03.076$$p405-418$$tJournal of alloys and compounds$$v638$$x0925-8388$$y2015
000279591 8564_ $$uhttps://juser.fz-juelich.de/record/279591/files/1-s2.0-S0925838815007896-main.pdf$$yRestricted
000279591 8564_ $$uhttps://juser.fz-juelich.de/record/279591/files/1-s2.0-S0925838815007896-main.gif?subformat=icon$$xicon$$yRestricted
000279591 8564_ $$uhttps://juser.fz-juelich.de/record/279591/files/1-s2.0-S0925838815007896-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000279591 8564_ $$uhttps://juser.fz-juelich.de/record/279591/files/1-s2.0-S0925838815007896-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000279591 8564_ $$uhttps://juser.fz-juelich.de/record/279591/files/1-s2.0-S0925838815007896-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000279591 8564_ $$uhttps://juser.fz-juelich.de/record/279591/files/1-s2.0-S0925838815007896-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000279591 909CO $$ooai:juser.fz-juelich.de:279591$$pVDB
000279591 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129770$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000279591 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000279591 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000279591 9141_ $$y2015
000279591 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ALLOY COMPD : 2014
000279591 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279591 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000279591 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279591 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000279591 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279591 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279591 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000279591 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000279591 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000279591 980__ $$ajournal
000279591 980__ $$aVDB
000279591 980__ $$aI:(DE-Juel1)IEK-2-20101013
000279591 980__ $$aUNRESTRICTED
000279591 981__ $$aI:(DE-Juel1)IMD-1-20101013