001     279593
005     20240711092248.0
024 7 _ |a 10.1007/s11085-015-9595-7
|2 doi
024 7 _ |a WOS:000363954500011
|2 WOS
037 _ _ |a FZJ-2015-07477
082 _ _ |a 540
100 1 _ |a Schiek, Martin
|0 P:(DE-Juel1)145429
|b 0
|e Corresponding author
245 _ _ |a Scale Formation of Alloy 602 CA During Isothermal Oxidation at 800-1100°C in Different Types of Water Vapor Containing Atmospheres
260 _ _ |a Dordrecht [u.a.]
|c 2015
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1591820870_4487
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The oxidation behavior of the nickel base Alloy 602 CA in atmospheres, relevant to gas separation units in fossil fired power plants, was investigated in the temperature range 800 to 1100 °C. Isothermal oxidation kinetics were determined in Ar–7 %H2O, Ar–4 %H2–7 %H2O, Ar–20 %O2–7 %H2O and, for comparative purposes, in Ar–20 %O2. The alloy formed an external alumina scale during oxidation at 800 °C, regardless of the atmosphere. Increasing the temperature results in gradual replacement of the alumina scale by an external chromia layer and internal alumina precipitates. The chromia growth rate is affected by the gas composition, due to titanium incorporation in the scale and outwardly protruding metallic nodules. The external alumina scale formation was strongly affected by surface cold work during specimen grinding. This effect, which promoted external alumina scale formation, was retained during exposure at 800 °C but was rapidly lost at higher temperatures resulting in external chromia scale formation and internal oxidation of aluminum.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Niewolak, Leszek
|0 P:(DE-Juel1)129770
|b 1
700 1 _ |a Nowak, Wojciech
|0 P:(DE-Juel1)144141
|b 2
700 1 _ |a Meier, G. H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Vassen, Robert
|0 P:(DE-Juel1)129670
|b 4
700 1 _ |a Quadakkers, Willem J.
|0 P:(DE-Juel1)129782
|b 5
773 _ _ |a 10.1007/s11085-015-9595-7
|0 PERI:(DE-600)2018581-9
|n 5-6
|p 661-694
|t Oxidation of metals
|v 84
|y 2015
|x 0030-770X
856 4 _ |u https://juser.fz-juelich.de/record/279593/files/art_10.1007_s11085-015-9595-7.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279593/files/art_10.1007_s11085-015-9595-7.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279593/files/art_10.1007_s11085-015-9595-7.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279593/files/art_10.1007_s11085-015-9595-7.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279593/files/art_10.1007_s11085-015-9595-7.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279593/files/art_10.1007_s11085-015-9595-7.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:279593
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145429
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129770
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144141
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129670
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129782
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b OXID MET : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
920 1 _ |0 I:(DE-Juel1)ETN-20090406
|k ETN
|l Projektträger Energie, Technologie, Nachhaltigkeit
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)ETN-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)PTJ-ETN-20090406
981 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)ETN-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21