001     279595
005     20240712100853.0
024 7 _ |2 doi
|a 10.5194/acpd-15-34243-2015
024 7 _ |2 ISSN
|a 1680-7367
024 7 _ |2 ISSN
|a 1680-7375
024 7 _ |2 Handle
|a 2128/9576
037 _ _ |a FZJ-2015-07479
082 _ _ |a 550
100 1 _ |0 P:(DE-Juel1)161554
|a Luebke, Anna
|b 0
|e Corresponding author
|u fzj
245 _ _ |a The origin of midlatitude ice clouds and the resulting influence on their microphysical properties
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1449825720_10441
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a The radiative role of ice clouds in the atmosphere is known to be important, but uncertainties remain concerning the magnitude and net effects. However, through measurements of the microphysical properties of cirrus clouds, we can better characterize them, which can ultimately allow for their radiative properties to be more accurately ascertained. It has recently been proposed that there are two types of cirrus clouds – in situ and liquid origin. In this study, we present observational evidence to show that two distinct types of cirrus do exist. Airborne, in situ measurements of cloud ice water content (IWC), ice crystal concentration (Nice), and ice crystal size from the 2014 ML-CIRRUS campaign provide cloud samples that have been divided according to their origin type. The key features that set liquid origin cirrus apart from the in situ origin cirrus are a higher frequency of high IWC (> 100 ppmv), higher Nice values, and larger ice crystals. A vertical distribution of Nice shows that the in situ origin cirrus clouds exhibit a median value of around 0.1 cm−3, while the liquid origin concentrations are slightly, but notably higher. The median sizes of the crystals contributing the most mass are less than 200 μm for in situ origin cirrus, with some of the largest crystals reaching 550 μm in size. The liquid origin cirrus, on the other hand, were observed to have median diameters greater than 200 μm, and crystals that were up to 750 μm. An examination of these characteristics in relation to each other and their relationship to temperature provides strong evidence that these differences arise from the dynamics and conditions in which the ice crystals formed. Additionally, the existence of these two groups in cirrus cloud populations may explain why a bimodal distribution in the IWC-temperature relationship has been observed. We hypothesize that the low IWC mode is the result of in situ origin cirrus and the high IWC mode is the result of liquid origin cirrus.
536 _ _ |0 G:(DE-HGF)POF3-244
|a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|c POF3-244
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)129108
|a Afchine, A.
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)156523
|a Costa, A.
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)129137
|a Meyer, J.
|b 3
700 1 _ |0 P:(DE-Juel1)139013
|a Rolf, C.
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)129155
|a Spelten, N.
|b 5
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Avallone, L. M.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Baumgardner, D.
|b 7
700 1 _ |0 P:(DE-Juel1)129131
|a Krämer, M.
|b 8
|u fzj
773 _ _ |0 PERI:(DE-600)2069857-4
|a 10.5194/acpd-15-34243-2015
|g Vol. 15, no. 23, p. 34243 - 34281
|n 23
|p 34243 - 34281
|t Atmospheric chemistry and physics / Discussions
|v 15
|x 1680-7375
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/279595/files/acpd-15-34243-2015.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/279595/files/acpd-15-34243-2015.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/279595/files/acpd-15-34243-2015.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/279595/files/acpd-15-34243-2015.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/279595/files/acpd-15-34243-2015.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/279595/files/acpd-15-34243-2015.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:279595
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
|q OpenAPC
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161554
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129108
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156523
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)139013
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129155
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129131
|a Forschungszentrum Jülich GmbH
|b 8
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-244
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Atmosphäre und Klima
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21