000279596 001__ 279596
000279596 005__ 20240711092249.0
000279596 0247_ $$2doi$$a10.1007/s11669-015-0403-5
000279596 0247_ $$2WOS$$aWOS:000362910800006
000279596 037__ $$aFZJ-2015-07480
000279596 082__ $$a540
000279596 1001_ $$0P:(DE-Juel1)129770$$aNiewolak, Leszek$$b0$$eCorresponding author
000279596 245__ $$aTemperature Dependence of Laves Phase Composition in Nb, W and Si-Alloyed High Chromium Ferritic Steels for SOFC Interconnect Applications
000279596 260__ $$aBoston, Mass.$$bSpringer$$c2015
000279596 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449825869_10435
000279596 3367_ $$2DataCite$$aOutput Types/Journal article
000279596 3367_ $$00$$2EndNote$$aJournal Article
000279596 3367_ $$2BibTeX$$aARTICLE
000279596 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279596 3367_ $$2DRIVER$$aarticle
000279596 520__ $$aThe Laves phase strengthened ferritic steel Crofer 22 H has been proposed as construction material for interconnects in solid oxide fuel cells. The background of the present study relates to the further qualification of this steel, especially with respect to a possible optimization of amount and composition of the strengthening Laves phase precipitates. For this purpose the chemical composition of the Laves phase in a number of high purity model alloys as well as in Crofer 22 H equilibrated at temperatures between 700 and 1100 °C was measured by EDX/WDX and atom probe tomography (APT). The obtained chemical compositions were used for a qualitative estimation of the site occupancy for Fe, Cr, Nb, W and Si in the Laves phase unit cell. Additionally, the results from APT measurements indicate the important role of impurities such as e.g. titanium in the Laves phase formation. Finally, the experimental results were compared with Thermocalc calculations using the database TCFE 7. This revealed that within the temperature range 800-900 °C a qualitative description of phases is possible, however, substantial differences existed particularly for the steel Crofer 22 H at and below 700 °C and above 950 °C.
000279596 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000279596 7001_ $$0P:(DE-Juel1)159473$$aSavenko, Aleksei$$b1
000279596 7001_ $$0P:(DE-Juel1)145209$$aGrüner, Daniel$$b2
000279596 7001_ $$0P:(DE-HGF)0$$aHattendorf, H.$$b3
000279596 7001_ $$0P:(DE-Juel1)133840$$aBreuer, Uwe$$b4
000279596 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, Willem J.$$b5
000279596 773__ $$0PERI:(DE-600)2552809-9$$a10.1007/s11669-015-0403-5$$n5$$p471-484$$tJournal of phase equilibria and diffusion$$v36$$x1547-7037$$y2015
000279596 8564_ $$uhttps://juser.fz-juelich.de/record/279596/files/art_10.1007_s11669-015-0403-5.pdf$$yRestricted
000279596 8564_ $$uhttps://juser.fz-juelich.de/record/279596/files/art_10.1007_s11669-015-0403-5.gif?subformat=icon$$xicon$$yRestricted
000279596 8564_ $$uhttps://juser.fz-juelich.de/record/279596/files/art_10.1007_s11669-015-0403-5.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000279596 8564_ $$uhttps://juser.fz-juelich.de/record/279596/files/art_10.1007_s11669-015-0403-5.jpg?subformat=icon-180$$xicon-180$$yRestricted
000279596 8564_ $$uhttps://juser.fz-juelich.de/record/279596/files/art_10.1007_s11669-015-0403-5.jpg?subformat=icon-640$$xicon-640$$yRestricted
000279596 8564_ $$uhttps://juser.fz-juelich.de/record/279596/files/art_10.1007_s11669-015-0403-5.pdf?subformat=pdfa$$xpdfa$$yRestricted
000279596 909CO $$ooai:juser.fz-juelich.de:279596$$pVDB
000279596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129770$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000279596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159473$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000279596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145209$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000279596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133840$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000279596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000279596 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000279596 9141_ $$y2015
000279596 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHASE EQUILIB DIFF : 2014
000279596 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279596 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279596 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279596 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279596 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000279596 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000279596 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000279596 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1
000279596 980__ $$ajournal
000279596 980__ $$aVDB
000279596 980__ $$aI:(DE-Juel1)IEK-2-20101013
000279596 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000279596 980__ $$aUNRESTRICTED
000279596 981__ $$aI:(DE-Juel1)IMD-1-20101013
000279596 981__ $$aI:(DE-Juel1)ZEA-3-20090406