001     279596
005     20240711092249.0
024 7 _ |a 10.1007/s11669-015-0403-5
|2 doi
024 7 _ |a WOS:000362910800006
|2 WOS
037 _ _ |a FZJ-2015-07480
082 _ _ |a 540
100 1 _ |a Niewolak, Leszek
|0 P:(DE-Juel1)129770
|b 0
|e Corresponding author
245 _ _ |a Temperature Dependence of Laves Phase Composition in Nb, W and Si-Alloyed High Chromium Ferritic Steels for SOFC Interconnect Applications
260 _ _ |a Boston, Mass.
|c 2015
|b Springer
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1449825869_10435
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The Laves phase strengthened ferritic steel Crofer 22 H has been proposed as construction material for interconnects in solid oxide fuel cells. The background of the present study relates to the further qualification of this steel, especially with respect to a possible optimization of amount and composition of the strengthening Laves phase precipitates. For this purpose the chemical composition of the Laves phase in a number of high purity model alloys as well as in Crofer 22 H equilibrated at temperatures between 700 and 1100 °C was measured by EDX/WDX and atom probe tomography (APT). The obtained chemical compositions were used for a qualitative estimation of the site occupancy for Fe, Cr, Nb, W and Si in the Laves phase unit cell. Additionally, the results from APT measurements indicate the important role of impurities such as e.g. titanium in the Laves phase formation. Finally, the experimental results were compared with Thermocalc calculations using the database TCFE 7. This revealed that within the temperature range 800-900 °C a qualitative description of phases is possible, however, substantial differences existed particularly for the steel Crofer 22 H at and below 700 °C and above 950 °C.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
700 1 _ |a Savenko, Aleksei
|0 P:(DE-Juel1)159473
|b 1
700 1 _ |a Grüner, Daniel
|0 P:(DE-Juel1)145209
|b 2
700 1 _ |a Hattendorf, H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Breuer, Uwe
|0 P:(DE-Juel1)133840
|b 4
700 1 _ |a Quadakkers, Willem J.
|0 P:(DE-Juel1)129782
|b 5
773 _ _ |a 10.1007/s11669-015-0403-5
|0 PERI:(DE-600)2552809-9
|n 5
|p 471-484
|t Journal of phase equilibria and diffusion
|v 36
|y 2015
|x 1547-7037
856 4 _ |u https://juser.fz-juelich.de/record/279596/files/art_10.1007_s11669-015-0403-5.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279596/files/art_10.1007_s11669-015-0403-5.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279596/files/art_10.1007_s11669-015-0403-5.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279596/files/art_10.1007_s11669-015-0403-5.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279596/files/art_10.1007_s11669-015-0403-5.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279596/files/art_10.1007_s11669-015-0403-5.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:279596
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129770
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159473
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145209
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)133840
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129782
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHASE EQUILIB DIFF : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21