000279597 001__ 279597
000279597 005__ 20240709094314.0
000279597 0247_ $$2doi$$a10.5006/1859
000279597 0247_ $$2WOS$$aWOS:000362915700007
000279597 037__ $$aFZJ-2015-07481
000279597 082__ $$a670
000279597 1001_ $$0P:(DE-Juel1)129819$$aZurek, Joanna$$b0$$eCorresponding author
000279597 245__ $$aEffect of Surface Condition on Steam Oxidation of Martensitic Steels and Nickel-Based Alloys
000279597 260__ $$aHouston, Tex.$$bNACE International$$c2015
000279597 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449825990_10437
000279597 3367_ $$2DataCite$$aOutput Types/Journal article
000279597 3367_ $$00$$2EndNote$$aJournal Article
000279597 3367_ $$2BibTeX$$aARTICLE
000279597 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279597 3367_ $$2DRIVER$$aarticle
000279597 520__ $$aThe steam oxidation behavior of inner tube surfaces in the as-manufactured condition for selected martensitic steels and nickel-based alloys was compared with that of standard laboratory test coupons that were ground to a 600 grit surface finish prior to the steam exposure. Exposures up to 10,000 h in the temperature range of 550°C to 700°C revealed that the as-delivered inner tube surfaces may exhibit substantial internal oxidation as a result of the (solution) heat treatment in the final stages of the manufacturing process. The internal oxides contained mainly chromia in the martensitic steels and alumina and/or titania in the nickel-based alloys. For the latter materials, the internal oxidation, especially of Ti, caused the steam-grown external chromia scales to be generally thinner than those observed on the specimens that were ground prior to oxidation testing. For the martensitic steels, the internal oxidation modified the incorporation of Cr (Mn, Si) into the surface scales, thus suppressing the formation of protective chromia-based surface scales. For all studied materials, the internal oxidation present in the as-received condition may affect the steam oxidation behavior at temperatures in the range of 550°C to 700°C up to 10,000 h exposure time.
000279597 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000279597 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, Willem J.$$b1$$eCorresponding author
000279597 773__ $$0PERI:(DE-600)2043065-6$$a10.5006/1859$$n11$$p1342-1359$$tCorrosion$$v71$$x0010-9312$$y2015
000279597 909CO $$ooai:juser.fz-juelich.de:279597$$pVDB
000279597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129819$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000279597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000279597 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000279597 9141_ $$y2015
000279597 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCORROSION-US : 2014
000279597 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279597 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279597 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000279597 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279597 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279597 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000279597 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000279597 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000279597 980__ $$ajournal
000279597 980__ $$aVDB
000279597 980__ $$aI:(DE-Juel1)IEK-2-20101013
000279597 980__ $$aUNRESTRICTED
000279597 981__ $$aI:(DE-Juel1)IMD-1-20101013