001     279597
005     20240709094314.0
024 7 _ |a 10.5006/1859
|2 doi
024 7 _ |a WOS:000362915700007
|2 WOS
037 _ _ |a FZJ-2015-07481
082 _ _ |a 670
100 1 _ |a Zurek, Joanna
|0 P:(DE-Juel1)129819
|b 0
|e Corresponding author
245 _ _ |a Effect of Surface Condition on Steam Oxidation of Martensitic Steels and Nickel-Based Alloys
260 _ _ |a Houston, Tex.
|c 2015
|b NACE International
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1449825990_10437
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The steam oxidation behavior of inner tube surfaces in the as-manufactured condition for selected martensitic steels and nickel-based alloys was compared with that of standard laboratory test coupons that were ground to a 600 grit surface finish prior to the steam exposure. Exposures up to 10,000 h in the temperature range of 550°C to 700°C revealed that the as-delivered inner tube surfaces may exhibit substantial internal oxidation as a result of the (solution) heat treatment in the final stages of the manufacturing process. The internal oxides contained mainly chromia in the martensitic steels and alumina and/or titania in the nickel-based alloys. For the latter materials, the internal oxidation, especially of Ti, caused the steam-grown external chromia scales to be generally thinner than those observed on the specimens that were ground prior to oxidation testing. For the martensitic steels, the internal oxidation modified the incorporation of Cr (Mn, Si) into the surface scales, thus suppressing the formation of protective chromia-based surface scales. For all studied materials, the internal oxidation present in the as-received condition may affect the steam oxidation behavior at temperatures in the range of 550°C to 700°C up to 10,000 h exposure time.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
700 1 _ |a Quadakkers, Willem J.
|0 P:(DE-Juel1)129782
|b 1
|e Corresponding author
773 _ _ |a 10.5006/1859
|0 PERI:(DE-600)2043065-6
|n 11
|p 1342-1359
|t Corrosion
|v 71
|y 2015
|x 0010-9312
909 C O |o oai:juser.fz-juelich.de:279597
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129819
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129782
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CORROSION-US : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21