000279616 001__ 279616
000279616 005__ 20240712100853.0
000279616 0247_ $$2doi$$a10.5194/acpd-15-34765-2015
000279616 0247_ $$2Handle$$a2128/9580
000279616 037__ $$aFZJ-2015-07500
000279616 082__ $$a550
000279616 1001_ $$0P:(DE-HGF)0$$aMüller, S.$$b0$$eCorresponding author
000279616 245__ $$aImpact of the Asian monsoon on the extratropical lower stratosphere: Trace gas observations during TACTS over Europe 2012
000279616 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000279616 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1450082764_20491
000279616 3367_ $$2DataCite$$aOutput Types/Journal article
000279616 3367_ $$00$$2EndNote$$aJournal Article
000279616 3367_ $$2BibTeX$$aARTICLE
000279616 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279616 3367_ $$2DRIVER$$aarticle
000279616 520__ $$aThe transport of air masses originating from the Asian monsoon anticyclone into the extratropical upper troposphere and lower stratosphere (Ex-UTLS) above potential temperatures Θ = 380 K was identified during the HALO aircraft mission TACTS in August and September 2012. In-situ measurements of CO, O3 and N2O during TACTS Flight 2 on the 30 August 2012 show the irreversible mixing of aged with younger (originating from the troposphere) stratospheric air masses within the Ex-UTLS. Backward trajectories calculated with the trajetory module of the CLaMS model indicate that these tropospherically affected air masses originate from the Asian monsoon anticyclone. From the monsoon circulation region these air masses are quasi-isentropically transported above Θ = 380 K into the Ex-UTLS where they subsequently mix with stratospheric air masses. The overall trace gas distribution measured during TACTS shows that this transport pathway has a significant impact on the Ex-UTLS during boreal summer and autumn. This leads to an intensification of the tropospheric influence on the Ex-UTLS with ΔΘ > 30 K (relative to the tropopause) within three weeks during the TACTS mission. In the same time period a weakening of the tropospheric influence on the lowermost stratosphere (LMS) is determined. Therefore, the study shows that the transport of air masses originating from the Asian summer monsoon region within the lower stratosphere above Θ = 380 K is of major importance for the change of the chemical composition of the Ex-UTLS from summer to autumn.
000279616 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000279616 7001_ $$0P:(DE-HGF)0$$aHoor, P.$$b1
000279616 7001_ $$0P:(DE-HGF)0$$aBozem, H.$$b2
000279616 7001_ $$0P:(DE-HGF)0$$aGute, E.$$b3
000279616 7001_ $$0P:(DE-Juel1)129164$$aVogel, Bärbel$$b4$$ufzj
000279616 7001_ $$0P:(DE-HGF)0$$aZahn, A.$$b5
000279616 7001_ $$0P:(DE-HGF)0$$aBönisch, H.$$b6
000279616 7001_ $$0P:(DE-HGF)0$$aKeber, T.$$b7
000279616 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b8$$ufzj
000279616 7001_ $$0P:(DE-Juel1)139013$$aRolf, Christian$$b9$$ufzj
000279616 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b10$$ufzj
000279616 7001_ $$0P:(DE-HGF)0$$aSchlager, H.$$b11
000279616 7001_ $$0P:(DE-HGF)0$$aEngel, A.$$b12
000279616 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acpd-15-34765-2015$$p34765-34812$$tAtmospheric chemistry and physics / Discussions$$v15$$x1680-7367$$y2015
000279616 8564_ $$uhttps://juser.fz-juelich.de/record/279616/files/acpd-15-34765-2015.pdf$$yOpenAccess
000279616 8564_ $$uhttps://juser.fz-juelich.de/record/279616/files/acpd-15-34765-2015.gif?subformat=icon$$xicon$$yOpenAccess
000279616 8564_ $$uhttps://juser.fz-juelich.de/record/279616/files/acpd-15-34765-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000279616 8564_ $$uhttps://juser.fz-juelich.de/record/279616/files/acpd-15-34765-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000279616 8564_ $$uhttps://juser.fz-juelich.de/record/279616/files/acpd-15-34765-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000279616 8564_ $$uhttps://juser.fz-juelich.de/record/279616/files/acpd-15-34765-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000279616 909CO $$ooai:juser.fz-juelich.de:279616$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000279616 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000279616 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000279616 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000279616 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000279616 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000279616 9141_ $$y2015
000279616 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000279616 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000279616 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000279616 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000279616 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000279616 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000279616 9801_ $$aUNRESTRICTED
000279616 9801_ $$aFullTexts
000279616 980__ $$ajournal
000279616 980__ $$aVDB
000279616 980__ $$aUNRESTRICTED
000279616 980__ $$aI:(DE-Juel1)IEK-7-20101013
000279616 981__ $$aI:(DE-Juel1)ICE-4-20101013