000279645 001__ 279645
000279645 005__ 20210129221107.0
000279645 0247_ $$2doi$$a10.1104/pp.15.01441
000279645 0247_ $$2WOS$$aWOS:000368472700011
000279645 0247_ $$2altmetric$$aaltmetric:4658245
000279645 0247_ $$2pmid$$apmid:26482889
000279645 037__ $$aFZJ-2015-07529
000279645 041__ $$aEnglish
000279645 082__ $$a580
000279645 1001_ $$0P:(DE-Juel1)156477$$aVoiniciuc, Catalin$$b0$$eCorresponding author
000279645 245__ $$aHighly Branched Xylan Made by IRREGULAR XYLEM14 and MUCILAGE-RELATED21 Links Mucilage to Arabidopsis Seeds
000279645 260__ $$aRockville, Md.$$bSoc.$$c2015
000279645 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453105479_16476
000279645 3367_ $$2DataCite$$aOutput Types/Journal article
000279645 3367_ $$00$$2EndNote$$aJournal Article
000279645 3367_ $$2BibTeX$$aARTICLE
000279645 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279645 3367_ $$2DRIVER$$aarticle
000279645 520__ $$aAll cells of terrestrial plants are fortified by walls composed of crystalline cellulose microfibrils and a variety of matrix polymers. Xylans are the second most abundant type of polysaccharides on Earth. Previous studies of Arabidopsis (Arabidopsis thaliana) irregular xylem (irx) mutants, with collapsed xylem vessels and dwarfed stature, highlighted the importance of this cell wall component and revealed multiple players required for its synthesis. Nevertheless, xylan elongation and substitution are complex processes that remain poorly understood. Recently, seed coat epidermal cells were shown to provide an excellent system for deciphering hemicellulose production. Using a coexpression and sequence-based strategy, we predicted several MUCILAGE-RELATED (MUCI) genes that encode glycosyltransferases (GTs) involved in the production of xylan. We now show that MUCI21, a member of an uncharacterized clade of the GT61 family, and IRX14 (GT43 protein) are essential for the synthesis of highly branched xylan in seed coat epidermal cells. Our results reveal that xylan is the most abundant xylose-rich component in Arabidopsis seed mucilage and is required to maintain its architecture. Characterization of muci21 and irx14 single and double mutants indicates that MUCI21 is a Golgi-localized protein that likely facilitates the addition of xylose residues directly to the xylan backbone. These unique branches seem to be necessary for pectin attachment to the seed surface, while the xylan backbone maintains cellulose distribution. Evaluation of muci21 and irx14 alongside mutants that disrupt other wall components suggests that mucilage adherence is maintained by complex interactions between several polymers: cellulose, xylans, pectins, and glycoproteins. 
000279645 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000279645 7001_ $$0P:(DE-Juel1)145720$$aGünl, Markus$$b1
000279645 7001_ $$0P:(DE-Juel1)162358$$aSchmidt, Maximilian$$b2$$ufzj
000279645 7001_ $$0P:(DE-Juel1)145719$$aUsadel, Björn$$b3
000279645 773__ $$0PERI:(DE-600)2004346-6$$a10.1104/pp.15.01441$$n4$$p2481-2495$$tPlant physiology$$v169$$x0032-0889$$y2015
000279645 8564_ $$uhttps://juser.fz-juelich.de/record/279645/files/Plant%20Physiol.-2015-Voiniciuc-2481-95.pdf$$yRestricted
000279645 8564_ $$uhttps://juser.fz-juelich.de/record/279645/files/Plant%20Physiol.-2015-Voiniciuc-2481-95.gif?subformat=icon$$xicon$$yRestricted
000279645 8564_ $$uhttps://juser.fz-juelich.de/record/279645/files/Plant%20Physiol.-2015-Voiniciuc-2481-95.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000279645 8564_ $$uhttps://juser.fz-juelich.de/record/279645/files/Plant%20Physiol.-2015-Voiniciuc-2481-95.jpg?subformat=icon-180$$xicon-180$$yRestricted
000279645 8564_ $$uhttps://juser.fz-juelich.de/record/279645/files/Plant%20Physiol.-2015-Voiniciuc-2481-95.jpg?subformat=icon-640$$xicon-640$$yRestricted
000279645 8564_ $$uhttps://juser.fz-juelich.de/record/279645/files/Plant%20Physiol.-2015-Voiniciuc-2481-95.pdf?subformat=pdfa$$xpdfa$$yRestricted
000279645 909CO $$ooai:juser.fz-juelich.de:279645$$pVDB
000279645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156477$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000279645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145720$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000279645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162358$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000279645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145719$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000279645 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000279645 9141_ $$y2015
000279645 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000279645 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279645 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000279645 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000279645 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT PHYSIOL : 2014
000279645 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279645 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000279645 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279645 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279645 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000279645 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000279645 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000279645 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT PHYSIOL : 2014
000279645 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000279645 980__ $$ajournal
000279645 980__ $$aVDB
000279645 980__ $$aI:(DE-Juel1)IBG-2-20101118
000279645 980__ $$aUNRESTRICTED