001     279648
005     20220930130053.0
024 7 _ |a 10.1016/j.scitotenv.2015.07.036
|2 doi
024 7 _ |a 0048-9697
|2 ISSN
024 7 _ |a 1879-1026
|2 ISSN
024 7 _ |a WOS:000367638000005
|2 WOS
037 _ _ |a FZJ-2015-07530
082 _ _ |a 333.7
100 1 _ |a Herrmann, Frank
|0 P:(DE-Juel1)141774
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Simulation of future groundwater recharge using a climate model ensemble and SAR-image based soil parameter distributions — A case study in an intensively-used Mediterranean catchment
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1450084650_20497
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We used observed climate data, an ensemble of four GCM–RCM combinations (global and regional climate models) and the water balance model mGROWA to estimate present and future groundwater recharge for the intensively-used Thau lagoon catchment in southern France. In addition to a highly resolved soil map, soil moisture distributions obtained from SAR-images (Synthetic Aperture Radar) were used to derive the spatial distribution of soil parameters covering the full simulation domain. Doing so helped us to assess the impact of different soil parameter sources on the modelled groundwater recharge levels. Groundwater recharge was simulated in monthly time steps using the ensemble approach and analysed in its spatial and temporal variability. The soil parameters originating from both sources led to very similar groundwater recharge rates, proving that soil parameters derived from SAR images may replace traditionally used soil maps in regions where soil maps are sparse or missing. Additionally, we showed that the variance in different GCM–RCMs influences the projected magnitude of future groundwater recharge change significantly more than the variance in the soil parameter distributions derived from the two different sources. For the period between 1950 and 2100, climate change impacts based on the climate model ensemble indicated that overall groundwater recharge will possibly show a low to moderate decrease in the Thau catchment. However, as no clear trend resulted from the ensemble simulations, reliable recommendations for adapting the regional groundwater management to changed available groundwater volumes could not be derived.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Baghdadi, Nicolas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Blaschek, Michael
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Deidda, Roberto
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Duttmann, Rainer
|0 P:(DE-HGF)0
|b 4
700 1 _ |a La Jeunesse, Isabelle
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sellami, Haykel
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 7
|u fzj
700 1 _ |a Wendland, Frank
|0 P:(DE-Juel1)129554
|b 8
|u fzj
770 _ _ |a Special Issue on Climate Change, Water and Security in the Mediterranean
773 _ _ |a 10.1016/j.scitotenv.2015.07.036
|g Vol. 543, p. 889 - 905
|0 PERI:(DE-600)1498726-0
|n Part B
|p 889 - 905
|t The science of the total environment
|v 543
|y 2016
|x 0048-9697
856 4 _ |u https://juser.fz-juelich.de/record/279648/files/1-s2.0-S004896971530379X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279648/files/1-s2.0-S004896971530379X-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279648/files/1-s2.0-S004896971530379X-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279648/files/1-s2.0-S004896971530379X-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279648/files/1-s2.0-S004896971530379X-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/279648/files/1-s2.0-S004896971530379X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:279648
|p OpenAPC
|p VDB
|p VDB:Earth_Environment
|p openCost
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)141774
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129554
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI TOTAL ENVIRON : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21