000279745 001__ 279745
000279745 005__ 20210129221124.0
000279745 0247_ $$2doi$$a10.4067/S0718-95162015005000026
000279745 0247_ $$2ISSN$$a0717-635X
000279745 0247_ $$2ISSN$$a0718-2791
000279745 0247_ $$2ISSN$$a0718-9508
000279745 0247_ $$2ISSN$$a0718-9516
000279745 0247_ $$2Handle$$a2128/9593
000279745 037__ $$aFZJ-2015-07627
000279745 082__ $$a580
000279745 1001_ $$0P:(DE-HGF)0$$aCalabi-Floody, M.$$b0$$eCorresponding author
000279745 245__ $$aRole of Nanoclays in Carbon stabilization in Andisols and Cambisols
000279745 260__ $$aTemuco$$bSociedad Chilena de la Ciencia del Suelo$$c2015
000279745 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1450170213_17112
000279745 3367_ $$2DataCite$$aOutput Types/Journal article
000279745 3367_ $$00$$2EndNote$$aJournal Article
000279745 3367_ $$2BibTeX$$aARTICLE
000279745 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279745 3367_ $$2DRIVER$$aarticle
000279745 520__ $$aGreenhouse gas (GHG) emissions and their consequent effect on global warming are an issue of global environmental concern. Increased carbon (C) stabilization and sequestration in soil organic matter (SOM) is one of the ways to mitigate these emissions. Here we evaluated the role of nanoclays isolated from soil on C stabilization in both a C rich Andisols and C depleted Cambisols. Nanoclays were analyzed for size and morphology by transmission electron microscopy, for elemental composition and molecular composition using pyrolysis-GC/MS. Moreover, nanoclays were treated with H2O2 to isolate stable SOM associated with them. Our result showed better nanoclay extraction efficiency and higher nanoclay yield for Cambisol compared to Andisols, probably related to their low organic matter content. Nanoclay fractions from both soils were different in size, morphology, surface reactivity and SOM content. Nanoclays in Andisols sequester around 5-times more C than Cambisols, and stabilized 6 to 8-times more C than Cambisols nanoclay after SOM chemical oxidation. Isoelectric points and surface charge of nanoclays extracted from the two soils was very different. However, the chemical reactivity of the nanoclay SOM was similar, illustrating their importance for C sequestration. Generally, the precise C stabilization mechanisms of both soils may be different, with nanoscale aggregation being more important in Andisols. We can conclude that independent of the soil type and mineralogy the nanoclay fraction may play an important role in C sequestration and stabilization in soil-plant systems.
000279745 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000279745 588__ $$aDataset connected to CrossRef
000279745 7001_ $$0P:(DE-HGF)0$$aRumpel, C.$$b1
000279745 7001_ $$0P:(DE-HGF)0$$aVelásquez, G.$$b2
000279745 7001_ $$0P:(DE-HGF)0$$aViolante, A.$$b3
000279745 7001_ $$0P:(DE-Juel1)145865$$aBol, R.$$b4
000279745 7001_ $$0P:(DE-HGF)0$$aCondron, L. M$$b5
000279745 7001_ $$0P:(DE-HGF)0$$aMora, M. L$$b6
000279745 773__ $$0PERI:(DE-600)2611093-3$$a10.4067/S0718-95162015005000026$$gno. ahead, p. 0 - 0$$n3$$p587-604$$tJournal of soil science and plant nutrition$$v15$$x0718-9516$$y2015
000279745 8564_ $$uhttps://juser.fz-juelich.de/record/279745/files/aop2615.pdf$$yOpenAccess
000279745 8564_ $$uhttps://juser.fz-juelich.de/record/279745/files/aop2615.gif?subformat=icon$$xicon$$yOpenAccess
000279745 8564_ $$uhttps://juser.fz-juelich.de/record/279745/files/aop2615.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000279745 8564_ $$uhttps://juser.fz-juelich.de/record/279745/files/aop2615.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000279745 8564_ $$uhttps://juser.fz-juelich.de/record/279745/files/aop2615.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000279745 8564_ $$uhttps://juser.fz-juelich.de/record/279745/files/aop2615.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000279745 909CO $$ooai:juser.fz-juelich.de:279745$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000279745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000279745 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000279745 9141_ $$y2015
000279745 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279745 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ SOIL SCI PLANT NUT : 2014
000279745 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000279745 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000279745 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279745 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279745 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000279745 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000279745 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279745 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000279745 980__ $$ajournal
000279745 980__ $$aVDB
000279745 980__ $$aUNRESTRICTED
000279745 980__ $$aI:(DE-Juel1)IBG-3-20101118
000279745 9801_ $$aUNRESTRICTED
000279745 9801_ $$aFullTexts