001     279767
005     20230426083130.0
024 7 _ |2 doi
|a 10.1103/PhysRevB.91.014421
024 7 _ |2 ISSN
|a 0163-1829
024 7 _ |2 ISSN
|a 0556-2805
024 7 _ |2 ISSN
|a 1095-3795
024 7 _ |2 ISSN
|a 1098-0121
024 7 _ |2 ISSN
|a 1550-235X
024 7 _ |2 Handle
|a 2128/9594
024 7 _ |2 WOS
|a WOS:000351765600004
024 7 _ |a altmetric:2823322
|2 altmetric
037 _ _ |a FZJ-2015-07649
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)145994
|a Kovacik, Roman
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Spin transport and spin-caloric effects in (Cr,Zn)Te half-metallic nanostructures: Effect of spin disorder at elevated temperatures from first principles
260 _ _ |a College Park, Md.
|b APS
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1450182765_17111
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a An important contribution to the thermoelectric and spin-caloric transport properties in magnetic materials at elevated temperatures is the formation of a spin-disordered state due to local moment fluctuations. This effect has not been largely investigated so far. We focus on various magnetic nanostructures of CrTe in the form of thin layers or nanowires embedded in ZnTe matrix, motivated by the miniaturization of spintronics devices and by recent suggestions that magnetic nanostructures can lead to extraordinary thermoelectric effects due to quantum confinement. The electronic structure of the studied systems is calculated within the multiple scattering screened Korringa-Kohn-Rostoker Green function (KKR-GF) framework. The Monte Carlo method is used to simulate the magnetization in the temperature induced spin disorder. The transport properties are evaluated from the transmission probability obtained using the Baranger-Stone approach within the KKR-GF framework. We find qualitative and quantitative changes in the thermoelectric and spin-caloric coefficients when spin disorder is included in the calculation. Furthermore, we show that substitutional impurities in CrTe nanowires could considerably enhance the Seebeck coefficient and the thermoelectric figure of merit.
536 _ _ |0 G:(DE-HGF)POF3-142
|a 142 - Controlling Spin-Based Phenomena (POF3-142)
|c POF3-142
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-143
|a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|c POF3-143
|f POF III
|x 1
542 _ _ |i 2015-01-15
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)130823
|a Mavropoulos, Phivos
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)130548
|a Blügel, Stefan
|b 2
|u fzj
773 1 8 |a 10.1103/physrevb.91.014421
|b American Physical Society (APS)
|d 2015-01-15
|n 1
|p 014421
|3 journal-article
|2 Crossref
|t Physical Review B
|v 91
|y 2015
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.91.014421
|g Vol. 91, no. 1, p. 014421
|0 PERI:(DE-600)2844160-6
|n 1
|p 014421
|t Physical review / B
|v 91
|y 2015
|x 1098-0121
856 4 _ |u https://juser.fz-juelich.de/record/279767/files/PhysRevB.91.014421.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/279767/files/PhysRevB.91.014421.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/279767/files/PhysRevB.91.014421.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/279767/files/PhysRevB.91.014421.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/279767/files/PhysRevB.91.014421.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/279767/files/PhysRevB.91.014421.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:279767
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145994
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130823
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130548
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-142
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b PHYS REV B : 2014
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
999 C 5 |a 10.1038/nmat3301
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature07321
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat3076
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.081403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4819949
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.104425
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.89.184422
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1142/S2010324713500021
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.44.L12
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/APEX.3.065204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/APEX.4.015203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.085208
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.89.134417
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.109.026601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.201108
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.87.060406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.46.L777
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.44.L948
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.45.L416
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jmmm.2006.10.1120
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.46.L682
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/pssb.19640060317
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 W. Kierspe
|y 1967
|2 Crossref
|o W. Kierspe 1967
999 C 5 |a 10.1103/PhysRevB.80.224423
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/14786430802438200
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.214405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.064404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.89.094410
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.125104
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.174402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.108.587
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.131.98
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0022-3719/17/34/023
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.15.1991
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0040-6090(72)90061-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2775535
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.67.104417
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1051/jphyslet:0197800390304300
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 N. P. Grazhdankina
|y 1961
|2 Crossref
|o N. P. Grazhdankina 1961
999 C 5 |1 N. P. Grazhdankina
|y 1961
|2 Crossref
|o N. P. Grazhdankina 1961
999 C 5 |a 10.1143/JJAP.5.134
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/1/46/008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-4596(81)90152-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.90.207202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/10/5/055011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.91.037204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/19/31/315221
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.094435
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jmmm.2010.04.042
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/0295-5075/93/47006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3938/jkps.53.384
|9 -- missing cx lookup --
|1 W. S. Yun
|p 384 -
|2 Crossref
|t J. Korean Phys. Soc.
|v 53
|y 2008
999 C 5 |a 10.1209/0295-5075/88/67007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2828521
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/22/15/156002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jmmm.2009.12.005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.7567/APEX.6.073006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S0021889811038970
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/14/11/304
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0010-4655(90)90009-P
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/3/39/006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1139/p80-159
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.52.11502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0304-8853(87)90721-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1699114
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1145/272991.272995
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.54.1019
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.58.293
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.40.8169
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21