001     279775
005     20220930130053.0
024 7 _ |a 10.5194/hessd-12-5123-2015
|2 doi
024 7 _ |a 1812-2108
|2 ISSN
024 7 _ |a 1812-2116
|2 ISSN
024 7 _ |a 2128/9600
|2 Handle
024 7 _ |a altmetric:4069976
|2 altmetric
037 _ _ |a FZJ-2015-07657
082 _ _ |a 550
100 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 0
|e Corresponding author
245 _ _ |a Optimality and inference in hydrology from entropy production considerations: synthetic hillslope numerical experiments
260 _ _ |a Katlenburg-Lindau
|c 2015
|b Soc.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1450270338_16037
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a In this study, entropy production optimization and inference principles are applied to a synthetic semi-arid hillslope in high-resolution, physics-based simulations. The results suggest that entropy or power is indeed maximized, because of the strong nonlinearity of variably saturated flow and competing processes related to soil moisture fluxes, the depletion of gradients, and the movement of a free water table. Thus, it appears that the maximum entropy production (MEP) principle may indeed be applicable to hydrologic systems. In the application to hydrologic system, the free water table constitutes an important degree of freedom in the optimization of entropy production and may also relate the theory to actual observations. In an ensuing analysis, an attempt is made to transfer the complex, "microscopic" hillslope model into a macroscopic model of reduced complexity using the MEP principle as an interference tool to obtain effective conductance coefficients and forces/gradients. The results demonstrate a new approach for the application of MEP to hydrologic systems and may form the basis for fruitful discussions and research in future.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
773 _ _ |a 10.5194/hessd-12-5123-2015
|g Vol. 12, no. 5, p. 5123 - 5149
|0 PERI:(DE-600)2190493-5
|n 5
|p 5123 - 5149
|t Hydrology and earth system sciences discussions
|v 12
|y 2015
|x 1812-2116
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/279775/files/hessd-12-5123-2015.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/279775/files/hessd-12-5123-2015.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/279775/files/hessd-12-5123-2015.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/279775/files/hessd-12-5123-2015.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/279775/files/hessd-12-5123-2015.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/279775/files/hessd-12-5123-2015.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:279775
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)151405
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21