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Abstract

In this study, entropy production optimization and inference principles are applied

to a synthetic semi-arid hillslope in high-resolution, physics-based simulations. The

results suggest that entropy or power is indeed maximized, because of the strong

nonlinearity of variably saturated flow and competing processes related to soil moisture5

fluxes, the depletion of gradients, and the movement of a free water table. Thus,

it appears that the maximum entropy production (MEP) principle may indeed be

applicable to hydrologic systems. In the application to hydrologic system, the free

water table constitutes an important degree of freedom in the optimization of entropy

production and may also relate the theory to actual observations. In an ensuing10

analysis, an attempt is made to transfer the complex, “microscopic” hillslope model

into a macroscopic model of reduced complexity using the MEP principle as an

interference tool to obtain effective conductance coefficients and forces/gradients. The

results demonstrate a new approach for the application of MEP to hydrologic systems

and may form the basis for fruitful discussions and research in future.15

1 Introduction

Theories of optimality and self-organization are appealing when dealing with complex

non-linear systems, because of their usefulness in interpreting interactions of

gradients and fluxes; inferring effective exchange coefficients, conductances, and

up-/downscaling; and ultimately in quantifying (predicting) systems’ states and20

uncertainties. In this context, entropy production and entropy production optimization

(mini-/maximization) received attention, because of the principles’ physics-based

foundation in non-equilibrium thermodynamics and potential connection with

information theory (e.g., Dewar, 2003; Koutsoyiannis, 2014). These principles appear

to be useful in applications to hydrologic (e.g., Zehe et al., 2013; Ehret et al., 2014),25

ecohydrologic (e.g., Dewar, 2010; Miedziejko and Kedziora, 2014; del Jesus et al.,
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2012), and atmospheric sciences (e.g., Paillard and Herbert, 2013), and in general to

open complex nonlinear thermodynamical systems (Abe and Okuyama, 2011).

The principle of entropy production optimization (EPO) states that in an open system,

a dynamic equilibrium is obtained, when entropy production inside (due to e.g. flow

processes of heat and water) equals the net entropy exchange with the outside.5

Optimality of the dynamic equilibrium is obtained, because the gradient, which drives

the flux and, thus the production of entropy, is reciprocally depleted by the same flux

(Kleidon et al., 2013). Note also, dynamic equilibrium refers to a state of stationarity

in the statistical sense. In this study, this is essential, in order to discuss nonlinear

systems, which are forced by a periodic boundary condition and are not well-mixed.10

In hydrology, the EPO principle has been applied to conceptual problems based

on the overarching rational that entropy production is maximized (maximum entropy

production, MEP) in obtaining a state of dynamic equilibrium by optimizing the fluxes

and gradients in competition via an adjustment of the conductance, λ. Following Kleidon

(2010)15

σ = ρQ
µhigh −µlow

T
, (1)

where σ is the entropy production (MT
−2

K
−1

); µhigh and µlow are a high and low

chemical potentials, respectively (L
2

T
−2

); ρ is the density of water (ML
−3

); T is

temperature (K); and Q is the volume flow rate (L
3

T
−1

). Because in this study, only

isothermal conditions are considered, power P , is used interchangeably with entropy20

production (Westhoff and Zehe, 2013; Westhoff et al., 2014) and chemical potential is

replaced with the hydraulic head normalized by the specific weight of water leading to

P = q (Hh −Hl) , (2)

q = λ (Hh −Hl) , (3)

where P is power per unit area (L
2

T
−1

); q is the flux (LT
−1

); Hh and Hl are the high25

and low hydraulic heads, respectively (L); and λ is a hydraulic conductance coefficient

5125



HESSD

12, 5123–5149, 2015

Optimality and

inference in

hydrology from

entropy production

considerations

S. J. Kollet

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

(T
−1

). Note, σ and P are positive quantities per definition, and may be used in a power

budget analysis to quantify net export/import of power by a flux (Schymanski et al.,

2010).

There have been some studies demonstrating, how P can be optimized as a function

of λ to obtain a system’s state at which entropy production is indeed at its maximum.5

In hydrology, there are quite a few examples of the application and discussion of the

MEP principle (e.g., Westhoff et al., 2014; Kleidon and Schymanski, 2008; Ehret et al.,

2014) also in connection with data (e.g., Zehe et al., 2013). However, its validity and

applicability to hydrologic systems is still in question (Westhoff and Zehe, 2013).

Often the MEP principle has been tested at steady state with simple linear bucket10

models, which are well-mixed. For example, Porada et al. (2011) performed a detailed

entropy production analysis of the land surface hydrologic cycle including the shallow

vadose zone assuming vertical equilibrium of the soil bucket model. Applying linear

bucket models, Kleidon and Schymanski (2008) showed that if the natural system

possesses enough degrees of freedom, in case of steady state, the system will15

tend towards a λ, when entropy production is maximized. For similar bucket models,

Westhoff et al. (2014) demonstrated the impact of periodic boundary forcing on

P , which may result in more than one maximum for unique λ values at dynamic

equilibrium. It is exactly this principle of optimization, which could make the MEP

the inference tool of choice in case of hydrologic systems. Unfortunately, the systems20

under consideration so far are quite conceptual and do not share the complexity and

degrees of freedom of the natural terrestrial system. Thus, relating the findings from

the idealized box models to the terrestrial system is difficult, because natural systems

are almost never well-mixed and linear.

In the case of the critical zone, which is here defined as the shallow subsurface25

connecting the atmosphere with the groundwater system, significant vertical gradients

may exist under dynamic equilibrium conditions; and fluxes in and out of the system

are determined by nonlinear exchange coefficients and gradients, which are generated

by e.g., evaporation and infiltration from the land surface (Kollet and Maxwell, 2008).
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Thus, in order to test the MEP principle, periodic forcing of the atmosphere, resulting

evaporation and infiltration from the land surface coupled with subsurface moisture

transport, and groundwater flow need to be considered. This is only possible utilizing

physics-based models of the terrestrial system, which have received considerable

attention since the blueprint of Freeze and Harlan (1964).5

For the critical zone, this study tests the MEP principle including the hypothesis

that if a single atmospheric time series is repeatedly applied over a hillslope until

dynamic equilibrium is reached, then the hillslope will tend toward an optimized state of

exchange, when entropy or power production is maximized. In testing the hypothesis,

one will also obtain insight into the dynamics and mechanisms of the critical zone to10

optimize entropy production. In addition, the MEP principle is applied as an inference

tool to obtain effective conductance coefficients and gradients in an attempt to transfer

the complex hillslope model into a conceptual model of reduced complexity.

2 Methods

In this study, the response of the critical zone along a shallow cross-section of15

a synthetic hillslope was simulated in 2-D using the integrated variably saturated

groundwater-surface water flow model ParFlow, PF, coupled to the Common Land

Model, CLM. The coupled model PF.CLM simulates variably saturated moisture

transport in the subsurface coupled with land surface processes that are evaporation,

net radiation, sensible heat and ground heat flux. Note, transpiration by plants was not20

taken into account in this study. The interested reader is referred to Kollet and Maxwell

(2008) for detailed explanation of the model. At the top, PF.CLM is forced with an

hourly atmospheric time series of one year consisting of long and short wave radiation,

air temperature, precipitation, wind speed, specific humidity, and barometric pressure

over one year in spinup mode. The time series was derived from Kollet and Maxwell25

(2008) by reducing the rainfall rates consistently by about 30 % to obtain semi-arid

conditions. The time series’ mean annual temperature and precipitation are 291 K and
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637 mm, respectively. The PF.CLM source code and input data used in the numerical

experiments outlined below can be obtained from the author.

2.1 Model setup and numerical experiments

The synthetic hillslope was simulated to a depth of some 5 m along a 100 m cross-

section with a constant lateral and vertical resolution of 1 m and 1 cm, respectively.5

A constant topographic slope of 0.001 % was implemented in the finite difference

framework with respect to a horizontal bottom of the cross-section. The van Genuchten

relationship was used for the relative hydraulic conductivity kr(p) [–] and saturation

θ(p) [–] functions, where p [L] is the hydraulic pressure of the porous medium. The

constant hydraulic parameters of the numerical experiment are van Genuchten’s n = 210

and alpha= 2 [m
−1

]; porosity, ϕ = 0.44 [–]. The boundary conditions were no-flow at

the bottom, and at x = 0 and x = 100 m, and of the free-surface overland flow type

(Kollet and Maxwell, 2006) at the top. All experiments were initialized with an arbitrary

pressure distribution and run repeatedly with the aforementioned atmospheric yearly

time series with a time step of 1 h until dynamic equilibrium was reached (statistical15

steady state).

In order identify an optimum in P as a function of an effective conductance coefficient,

which is not known at this point, saturated hydraulic conductivity, Ksat, was very varied

under the assumption that Ksat is proportional to the effective conductance coefficient.

(This assumption is tested in Sect. 3.2.) Two series of numerical experiments, S120

and S2, were performed. In S1, the saturated hydraulic conductivity was varied Ksat =

[0.0005, 0.001, 0.005, 0.01, 0.05, 0.5, 0.1, 1.0, 10.0] [mh
−1

]. In S2, Ksat was varied

exactly the same way as in S1, but the values were perturbed spatially with white noise

using a log-normal distribution with one order of magnitude standard deviation (SD).

Note, the perturbations for the different Ksat values were performed with the same seed25

in order to generate identically spatial random patterns.
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2.2 Analyses

In addition to standard fluxes and states, such as the total water budget, evaporation,

qev
(LT

−1
), infiltration, qinf

(LT
−1

), hydraulic head, H (L), the variables defined below

were calculated in order to arrive at a detailed power analysis for the subsurface.

While overland flow occurred in the numerical experiment by the process of excess5

infiltration and also shallow excess saturation, surface runoff out of the domain and

resulting power was not included in the analysis. Runoff out of the domain occurred

only for Ksat = 0.0005 (mh
−1

) and S2 and was only 2.2 % of the annual precipitation. For

consistency, the contribution to infiltration by surface runoff (or runon) from neighboring

cells at the land surface was incorporated in the water and power budget analyses.10

At the land surface, net exfiltration/infiltration, q
ex,inf

(ma
−1

), over the simulation

period are calculated as the sum of the hourly differences between precipitation, PCP

(mh
−1

), and evaporation, E (mh
−1

), at each grid point along the x direction with

indices i

q
ev,inf

i = −
NT
∑

n=1

PCPn
i −En

i
, (4)15

where NT is the total number of time steps. These net fluxes can be integrated over

regions of the domain to identify net recharge and discharge areas along the land

surface

q
ev,inf

=

NI
∑

i

q
ev,inf

i , (5)

where NI is the upper bound of a region in the x direction.20
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Annual mean hydraulic head values at each pixel, H i ,k (m), are obtained in a similar

fashion

H i ,k =
1

NT

NT
∑

n=1

Hn
i ,k

. (6)

Power across each cell interface generated by the fluxes in the east, west, up, and down

direction is indicated with the subscripts e, w, u, and d, respectively, and is calculated5

based on the equation

Pe = λe

(

He −Hi ,j

)2

Pw = λw

(

Hw −Hi ,j

)2

Pu = λu

(

Hu −Hi ,j

)2

Pd = λd

(

Hd −Hi ,j

)2

(7)

The interface conductances, λ, are calculated following

λe, w =
Ksat, harmkr, uw

∆x
; λn,s =

Ksat, harmkr, uw

∆z
(8)

with Ksat, harm being the harmonic average of the two adjacent cell hydraulic10

conductivities; kr, uw is the upwinded relative hydraulic conductivity; and ∆x and ∆z are

the spatial discretizations in the x and z direction, respectively, which are constant in

this study. Thus, the calculation of power is consistent with the way PF.CLM calculates

the Darcy fluxes based on a finite control volume discretization with two-point flux

approximation.15

Using Eq. (4), the instantaneous power budget Pi ,j (m
2

h
−1

) for each pixel with the

indices i , k in the x and z directions, respectively, at time step n is estimated using

P n
i ,k

= ±P n
e ± P n

w ± P n
u ± P n

d
. (9)
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Note, the sign of power across the cell faces depends on the direction of the fluxes i.e.

inward fluxes result in an export of power (negative sign), while outward fluxes result in

an import of power (positive sign) (Schymanski et al., 2010).

At dynamic equilibrium, the annual net power over the simulation time of one year at

each grid point, P i ,j (m
2

a
−1

) is obtained via summation of Pi ,j5

P i ,k =

NT
∑

n=1

P n
i ,k

. (10)

Consistent with Eq. (5), the net power over different regions of the computational

domain, P (m
2

a
−1

), such as the two recharge and discharge halfspaces, may be

obtained via

P =

NI
∑

i

NK
∑

k

P i ,k , (11)10

where NK is the upper bound in the z direction.

3 Results

3.1 General observations and optimality

In a first step, a straightforward mass balance calculation was performed for all

simulated cases, which shows that PCP = E over the entire domain and one year15

simulation period at dynamic equilibrium. Interestingly, a groundwater reservoir is

generated in the simulations under semi-arid atmospheric forcing, which connects

a recharge zone with a discharge zone with −q
ev

= q
inf

, both developing naturally in the

numerical experiment forming a large-scale circulation pattern (Fig. 1). In case of S2,
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this large-scale circulation pattern is underlying a number of small-scale circulations

patterns originating from the random heterogeneity in Ksat.

In Fig. 1, the cross section of H i ,j is plotted for S1 and S2 for Ksat = 0.005 (mh
−1

).

At the top (the land surface) the net fluxes of the recharge and discharge zones q
inf

and q
ev

are indicated separating the hillslope into two half-spaces. Note, that H i ,j5

decreases monotonously from z = 0 at the bottom toward the land surface everywhere

in the domain. Thus, the average gradient of H i ,j does not point into the direction of the

mean vertical flux in the recharge zone. This is not intuitive, but physically meaningful

and can be explained with the nonlinear nature of the Darcy flow under variably

saturated conditions due to the dependence of the relative hydraulic conductivity,10

kr(p), on the hydraulic pressure, p: under wet conditions, vertical moisture fluxes

toward the water table are large with small gradients, while under dry conditions,

fluxes are small with large gradients. Eventually the saturated zone is disconnected

from ensuing drying events at the surface, because of the well-known processes of

three-stage evaporation (Or et al., 2013). The nonlinear dynamics of these processes15

are effectively simulated, because of the high spatial discretization of ∆z = 1 cm in

the vertical direction, and constitute an important degree of freedom in the ensuing

power analyses. This rather simple but non-trivial finding has major implications for the

analysis of coupled nonlinear systems. Because the mean potential gradients may

not point into the direction of the mean flux, it is arguably impossible to arrive at20

effective exchange coefficients in a straightforward manner. This is discussed in detail

in Sect. 3.2 including a possible solution approach.

Figure 2 shows net power P , of the dynamic equilibrium simulation for Ksat = 0.005

(mh
−1

) for the homogenous S1, and heterogeneous, S2, experimental setup. In case

of S1, the cross section exhibits characteristic regions of P export and import. The25

lower part of the domain below approximately 2.5 m corresponds to the groundwater

reservoir with the recharge zone on the right and the discharge zone on the left. During

precipitation events, this reservoir is connected episodically with the intermediate zone
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above, which is a general net exporter of power (i.e. zone of net inflow) from net

recharge in the right halfspace and capillary rise in the left halfspace. This zone

is separated at the top by a distinct band of low power from an active zone of

approximately 0.5 m thickness, which is in constant interaction with the atmospheric

forcing i.e. evaporation and infiltration at the land surface. Note, in this active zone,5

the red vertical segments of P correspond to subtle but abrupt changes in the

topography due to the finite difference/control volume approximation in PF.CLM. This is

not a numerical arte fact, but a result of the stair-step like topographic representation at

the centimeter scale. At these locations strong lateral gradients are generated, which

are especially pronounced under dry conditions and explicitly resolved, because of the10

extremely high spatial resolution of the model.

In case of S2, the spatial white noise perturbation of Ksat results in additional small-

scale recharge-discharge zones and circulation patterns at the surface and deeper

subsurface superposed on the large-scale pattern, which is obtainable for S2 via mass

balance calculation for the recharge and discharge halfspaces. The band of zero net15

power separating the active zone from the deeper subsurface is less well defined and

located at greater depth on average. Additionally, the recharge and discharge zones of

the intermediate and deeper subsurface i.e. the groundwater reservoir are perturbed

and not identifiable anymore from the net power cross section.

Figure 3 shows an example of two vertical profiles for S1 and S2 of absolute20

values of power, log(|P |), extracted from the recharge halfspaces of the cross sections

provided in Fig. 2. While the vertical zonation is similar in both cases, the homogeneous

conditions of S1 generally result in considerably smaller P values especially in the

groundwater reservoir. In addition, heterogeneity in Ksat strongly smooths the profile,

but the different zones (e.g., the active zone) are still recognizable.25

Figure 4 summarizes the results of the analysis over the recharge/discharge zone

with respect to net power, P ; the net Darcy flux −q
ev

= q
inf

= q; and the spatiotemporal
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mean of the hydraulic head at the bottom of the domain, Hbot; all as a function of

log(Ksat). Note, in Fig. 4c, q is normalized by Ksat.

In Fig. 4a, net power, P , is plotted, which shows clear maxima at around log(Ksat) =

−2 and log(Ksat) = 0 for scenario S1 and S2. Net power is also generally larger under

heterogeneous conditions of S2. Note that power increases sharply for log(Ksat) > −1,5

when the groundwater reservoir falls dry in the simulations. This is reflected in Fig. 4d,

when Hbot < 0, which is indicated as the grey areas in Figs. 4 and 5.

It is remarkable that the critical zone indeed appears to exhibit maximization in

the generation of power by adjusting the flux and force (gradient) accordingly. In this

adjustment, the groundwater reservoir with its free water table is critical as a degree10

of freedom in the nonlinear problem of unsaturated flow. While the flux increases

monotonically with increasing Ksat until the groundwater reservoir falls dry between

log(Ksat) = −1 and −0.3 (Fig. 4b and c), power does not increase monotonically

resulting in the first maximum. Because the water table depth increases with increasing

Ksat, the groundwater reservoir is further disconnected from the land surface (Fig. 4d)15

leading to dryer conditions in the hillslope. Thus, there are competing processes

involved that result in a maximization of power: while there is increasing circulation

in the hillslope with increasing Ksat (Fig. 4b and c), the water table drops and the

hillslope becomes drier and less efficient in the generation of power. This implies that

the effective force, ∆H , which drives the flux and power in competition with the flux,20

needs to decrease for log(Ksat) > −2.

The second maximum in P at around log(Ksat) = 0 occurs with a continuing decrease

of q and manifests the transition to a completely different flow geometry without

a groundwater reservoir and only variably saturated flow. Therefore, the mechanisms

are determined by the internal dynamics of the system and also by the (no-flow)25

boundaries. The correct location of this “discontinuity” may be further resolved with

additional simulations. Note, at this point of the discussion some caution is appropriate,

because P exhibits maximization with respect to Ksat and not with respect to an
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effective exchange or conductance coefficient, λ, which is not available at this point,

but will be derived below.

An additional important observations must be made: Hbot values are almost identical

for small Ksat values in S1 and S2 and differ only slightly for larger Ksat values. Thus,

while the mean fluxes are strongly dependent on heterogeneity, the mean water table5

location is mostly a function of the homogenous and geometric Ksat in S1 and S2,

respectively. Because the free water table is a measurable quantity, important in the

maximization of P , and apparently relatively independent from heterogeneity, Hbot may

be useful in the identification of an effective conductance λ. This hypothesis is also

further tested below.10

It is also interesting that the power and fluxes are significantly larger in case of

heterogeneity, while the location of the water table does not change considerably. This

is due to additional circulation cells that are generated by the perturbation of Ksat, which

generate longer flow paths resulting in a more effective dissipation of incoming energy

i.e. water flux at the land surface. Thus, heterogeneity (or chaos) in hydraulic properties15

is effective in the dissipation of energy similar to turbulence in fluid dynamics. The

question is whether this is due to larger effective conductances and/or larger effective

forces in case of heterogeneity, which will be addressed below.

3.2 MEP principle as an inference tool

Ultimately, the appeal of MEP (or EPO principles in general) are the inference of20

upscaled or effective exchange coefficients and forces/gradients, which may be used

to quantitatively describe the complex system without the explicit knowledge about

microscopic details (Dewar, 2009). In this context, a popular example is gas diffusion,

which can be captured by an inferred, macroscopic diffusion coefficient and gradient

instead of honoring the motion and interactions of individual molecules. However, in25

hydrologic applications, it is not obvious how MEP may be useful in this sense.
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Here, an attempt is made to conceptually transfer the numerical, “microscopic”

hillslope model into a macroscopic conceptual model (Fig. 5) directed at Kleidon and

Schymanski (2008) and Westhoff et al. (2014). In the conceptual model, the infiltration

and evaporation flux, qinf and qet, are obtained from the hillslope model (e.g., Fig. 1).

From the water and power budget analysis the macroscopic flux, q = q
ev

= q
inf

= qet =5

qinf, and power P are available under dynamic equilibrium conditions. What is missing

are the macroscopic heads of the conceptual model Hb,h and Hb,l, or the corresponding

macroscopic force ∆H = Hb,h −Hb,l.

In the numerical experiment, the instantaneous force ∆H = (Hh−Hl) is clearly defined

at the local scale as the difference in hydraulic head between neighboring cells (Eq. 7).10

However, at the macroscopic scale of the bucket model, the upscaled, macroscopic

force ∆H is not easily derived from the numerical experiment. Due to the nonlinear

nature of variably saturated flow, simple spatiotemporal averaging of hydraulic head

over the recharge and discharge halfspaces of the hillslope model will not lead to

meaningful gradients or forces. As a matter of fact, this type of averaging may lead to15

mean gradients pointing in the opposite direction of the flux as discussed in the context

of Fig. 1. In addition, an upscaled effective exchange or conductance coefficient, λ is

not available. Thus, one is left with two unknowns (∆H and λ) and only one equation

that is Darcy’s law. This is generally the case in subsurface hydrology when dealing

with the upscaling problem.20

Yet, with P and q at hand, which were calculated directly from the “microscopic”

simulations, a rather intuitive solution is to apply Eq. (2) and solve directly for ∆H =

P /q (L), which is shown in Fig. 6a as a function of log(Ksat). Because q decreases

faster than P , ∆H has a maximum at log(Ksat) = −3. Thus, P may also be interpreted

as an upscaled force weighted by the corresponding flux. This type of weighing is25

very useful, because in case of Richards equation, under dry conditions, small fluxes

correspond with large gradients, while under wet conditions, large fluxes correspond
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with small gradients. In order to arrive at an upscaled gradient, ∇H , ∆H may be divided

by a characteristic length scale, L, that is e.g. the length of the hillslope.

In the next step, applying Darcy’s or conductance law to Eq. (2), one may additionally

solve for a macroscopic or effective conductance coefficient λ = P /∆H
2

(T
−1

), which

was unseizable before (Fig. 6b). Thus, MEP provides a second equation in addition5

to Darcy’s law to solve for the two classic unknowns that are the effective gradient

and exchange coefficient in the problem of upscaling of nonlinear hydrologic systems.

Interestingly, λ does not change significantly between the homogenous, S1, and

perturbed Ksat, S2 case considering a SD of one order of magnitude in the perturbation

for S2. It appears that the system equilibrates at very similar effective exchange10

coefficients in case of small-scale chaos. Figure 4b also sheds light on the initial

assumption that Ksat is proportional to λ, which holds for log(Ksat) < −1. In case of

no groundwater reservoir and Ksat > −1, λ is inversely proportional to Ksat, because of

the strong nonlinearity in the relative hydraulic conductivity in Richards equation.

In Fig. 4, P was plotted vs. Ksat, indicating but not yet demonstrating maximization15

of power. Figure 6c now demonstrates maximization by plotting the derived λ values

vs. P . Remarkably, the maxima of P occur at the same λ values in the presence and

absence of a groundwater reservoir (solid and dashed lines respectively). Thus, the

hillslope indeed maximizes power via attaining a unique optimized effective exchange

coefficient for quite different hydrologic conditions. In case of heterogeneous conditions20

of S2, more power is obtained without a groundwater reservoir, which is reversed

in comparison to S1, when slightly more power is obtained in the presence of

a groundwater reservoir. The mean flux, q, as function of λ shown in Fig. 6d behaves

very similar in case of S1 and S2. Thus, a scaling law may be available with respect

to the perturbation of Ksat collapsing both curves into one, which will require additional25

simulations of heterogeneous hillslopes.
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Figure 6 also answers the questions posed in the previous section. Because ∆λ
increases monotonously until the groundwater reservoir disappears, the maximum in

the effective force ∆H is responsible for the first maximum in P . The second maximum

is also mainly determined by ∆H , when λ decreases, because of the changes in the

overall flow geometry without a free water table. The increase in the flux due to the5

perturbation of Ksat can also be attributed mainly to an in increase in local and upscaled

effective forces shown in Fig. 6a.

3.3 Open questions and suggested path forward

The results from the numerical simulations suggest that MEP is indeed happening

in a hillslope mainly due to the interaction of a free moving water table with the10

atmospheric forcing, and the associated strongly nonlinear soil moisture redistribution.

However, it is not obvious how the results can be applied to real world systems. For

example, power can not be measured in the field, thus, the second equation, which

is needed to solve for an effective conductance coefficient or force, is not applicable

directly to measurements; additional physics based simulation are required. However,15

the results suggest that the water table or hydraulic head at the bottom of an aquifer,

Hbot, as a measurable quantity plays a key role in MEP of hydrologic systems. In Fig. 7,

plotting Hbot vs. λ demonstrates that the mean position of the water table (solid lines

with symbols in Fig. 7) is indeed a good reflection of the effective state of conductance

of the hillslope independent of heterogeneity. Thus, empirical relationships of Hbot with20

λ may be developed for different hillslope configurations and climate conditions, which

may provide a way to arrive at effective gradients in case of known net fluxes (or vice

versa). However, this clear relationship disappears, when the groundwater reservoir

dries up and Hbot < 0 (dashed lines with symbols in Fig. 7).

In this context, the limited set of simulations presented here does not provide general25

scaling relationships that could be used to relate, for example, net fluxes to estimates
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of saturated hydraulic conductivity in order to arrive at an effective gradient. A large

number of additional experiments will be required. These must also take into account

different types of atmospheric forcing and topography, which will also impact the

relationships presented here, because of the strong nonlinearity of the system under

consideration. Additionally, vegetation and spatially correlated heterogeneity in all5

hydraulic parameters needs to be taken into account. Thus, there are a larger number

of exciting research possibilities, which will lead to a more in-depth understanding of

the applicability of the presented concepts.

4 Summary and conclusions

Utilizing results from high-resolution, physics-based simulations of a 2-D semi-arid10

hillslope, entropy production optimization and inference principles were tested under

dynamic equilibrium conditions. The results suggest that power or entropy production

is indeed maximized, because the force, which drives the flux and entropy production, is

reciprocally depleted by the same flux. In this process, the free water table plays a key

role. While the flux and the depletion of the gradient are increased by an increase15

in the saturated hydraulic conductivity, water table depth increases as well, which

results in overall drier conditions in the hillslope. Because of the nonlinearity of variably

saturated flow, this leads to a decrease in the effective force and resulting power. Thus,

there is competition between an increasing flux and declining water table for varying

effective hydraulic conductances, which constitutes an important degree of freedom in20

the maximization of entropy production.

It appears that due to this nonlinearity of variably saturated flow, there is very little

opportunity for upscaling under realistic dynamic equilibrium conditions, because one

is always left with one equation (Darcy’s law) and two unknowns that are the effective

conductance coefficient and effective force/gradient. In this dilemma, MEP may provide25

a second equation for obtaining the effective values and transferring the “microscopic”
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model into a macroscopic model of reduced complexity, as was demonstrated in this

study.

Transferring and validating the results with measurements is difficult, because

entropy or power can not be observed and measured directly. Thus, additional physics-

based simulations accounting for the required degrees of freedom and nonlinearities5

will be needed in conjunction with data. However, the mean depth of the water table

appears to be a strong measure of the effective state of the hydrologic system reflected

by an effective conductance coefficient.

The presented results are comprehensive in the sense that the pertinent physical

processes are simulated and analyzed in a fully-coupled, mass and energy10

conservative fashion and consistent theoretical framework. However, the results

are not exhaustive. They are a starting point for a rich set of physics-based

simulations, analyses, and discussion in the suggested context, which need to be

connected to observations in future. These simulations and analyses need to include

e.g., vegetation, spatially correlated heterogeneity in subsurface and land surface15

properties, and varying climate conditions.
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Figure 1. Mean hydraulic head cross-sections, H i ,j , of S1 (left) and S2 (right) obtained from

the dynamic equilibrium simulations. Indicated are the net recharge (q
inf

< 0) and discharge

(q
ev
> 0) halfspaces. The color scale is indicated qualitatively, because of the wide range of

hydraulic head values resulting from the semi-arid time series.
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Figure 2. Example of net power, P i ,j , of the dynamic equilibrium condition for Ksat = 0.005 and

homogenous and heterogeneous conditions of the experimental setups S1 (left) and S2 (right),

respectively.
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Figure 3. Vertical profile of log absolute power, log(|P |), extracted from the discharge zone for

the homogenous and heterogeneous scenario S1 and S2, respectively.
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Figure 4. (a) Logarithm of net power, P (m
2

a
−1

); (b) logarithm of net flux, q (ma
−1

); (c)

logarithm of q/Ksat (–); and (d) mean hydraulic head, Hbot (m), at the bottom of the cross

section, all as a function of log(Ksat) for the recharge/discharge halfspaces of the S1 and S2

experiments. The grey area indicates Ksat values at which the groundwater reservoir falls dry

(Hbot < 0).
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Figure 5. Macroscopic hillslope bucket model after Westhoff et al. (2014), where Hb,h and Hb,l

are the unknown macroscopic hydraulic heads or potentials, and qinf and qet are the mean

infiltration and evaporation fluxes obtained from the numerical experiments.
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Figure 6. (a) Logarithm of the effective force, ∆H (m); (b) logarithm of the effective

conductance, λ (a
−1

), as a function of log(Ksat); and (c) power, P (m
2

a
−1

); and (d) mean flux, q

(ma
−1

), as a function of λ (a
−1

). The grey areas in (a) and (b) indicate Ksat values at which the

groundwater reservoir falls dry (Hbot < 0). Similarly, in (c) and (d), the solid and dashed lines

indicate the presence and absence of a groundwater reservoir.
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Figure 7. Effective conductance, λ, plotted versus mean hydraulic head at the bottom of the

simulation domain, Hbot. Solid lines indicate the presence of a groundwater reservoir (Hbot > 0),

while dashed lines indicate the absence of a groundwater reservoir (Hbot < 0).
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