000279801 001__ 279801
000279801 005__ 20240619083520.0
000279801 037__ $$aFZJ-2015-07683
000279801 041__ $$aEnglish
000279801 1001_ $$0P:(DE-Juel1)130797$$aLettinga, M. P.$$b0$$eCorresponding author
000279801 1112_ $$a29th conference of the European Colloid and Interface  Society$$cBordeaux$$d2015-09-07 - 2015-09-10$$gECIS$$wFrance
000279801 245__ $$aDirect visualization of flow-induced conformationaltransitions of single actin filaments in entangled solutions
000279801 260__ $$c2015
000279801 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1452070703_26996$$xPlenary/Keynote
000279801 3367_ $$033$$2EndNote$$aConference Paper
000279801 3367_ $$2DataCite$$aOther
000279801 3367_ $$2ORCID$$aLECTURE_SPEECH
000279801 3367_ $$2DRIVER$$aconferenceObject
000279801 3367_ $$2BibTeX$$aINPROCEEDINGS
000279801 520__ $$aWhile semi-flexible polymers and fibres are an important class of material due to their rich mechanical properties, it remains unclear how these properties relate to the microscopic conformation of the polymers. Actin filaments constitute an ideal model polymer system due to their micron-sized length and relatively high stiffness that allow imaging at the single filament level. Here we study the effect of entanglements on the conformational dynamics of actin filaments in shear flow. We directly measure the full three-dimensional conformation of single actin filaments, using confocal microscopy in combination with a counter-rotating cone-plate shear cell. We show that initially entangled filaments form disentangled orientationally ordered hairpins, confined in the flow-vorticity plane. In addition, shear flow causes stretching and shear alignment of the hairpin tails, while the filament length distribution remains unchanged. These observations explain the strain-softening and shear thinning behaviour of entangled F-actin solutions, which aids the understanding of the flow behaviour of complex fluids containing semi-flexible polymers [1].
000279801 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000279801 7001_ $$0P:(DE-Juel1)141638$$aGuu, Donald$$b1
000279801 7001_ $$0P:(DE-Juel1)166077$$aKirchenbüchler, Inka$$b2
000279801 7001_ $$0P:(DE-HGF)0$$aKoenderink, G.$$b3
000279801 7001_ $$0P:(DE-HGF)0$$aKurniawan, N.$$b4
000279801 909CO $$ooai:juser.fz-juelich.de:279801$$pVDB
000279801 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000279801 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141638$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000279801 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166077$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000279801 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000279801 9141_ $$y2015
000279801 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000279801 920__ $$lyes
000279801 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000279801 980__ $$aconf
000279801 980__ $$aVDB
000279801 980__ $$aUNRESTRICTED
000279801 980__ $$aI:(DE-Juel1)ICS-3-20110106