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Deterministic lateral displacement (DLD) devices have great potential for the separation and sorting
of various suspended particles based on their size, shape, deformability, and other intrinsic properties.
Currently, the basic idea for the separation mechanism is that the structure and geometry of DLDs
uniquely determine the flow field, which in turn defines a critical particle size and the particle lateral
displacement within a device. We employ numerical simulations using coarse-grained mesoscopic
methods and two-dimensional models to elucidate the dynamics of both rigid spherical particles and
deformable red blood cells (RBCs) in different DLD geometries. Several shapes of pillars, including
circular, diamond, square, and triangular structures, and a few particle sizes are considered. The
simulation results show that a critical particle size can be well defined for rigid spherical particles
and depends on the details of the DLD structure and the corresponding flow field within the device.
However, non-isotropic and deformable particles such as RBCs exhibit much more complex dynamics
within a DLD device, which cannot properly be described by a single parameter such as the critical
size. The dynamics and deformation of soft particles within a DLD device become also important,
indicating that not only size sorting, but additional sorting targets (e.g., shape, deformability, internal
viscosity) are possible. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4937171]

I. INTRODUCTION

The deterministic lateral displacement (DLD) approach1

for particle and cell sorting has attracted considerable research
and technological interest for developing novel microfluidic
devices for biological and clinical applications. Starting from
its invention by Huang et al.2 as a size-dependent (label-
free) particle-separation method, this technique has been
continuously used and developed further. DLD devices are
now able to separate multiple particles with an extremely
high resolution of about 20 nm when applied to the sorting
of polystyrene beads.2–4 Other applications also include the
separation of parasites from human blood,5 fractionation of
human blood cells,6,7 and sorting of droplets in microfluidics.8

This demonstrates a great potential of DLDs for the separation
and detection of various rigid and deformable particles in a
suspension based on particle properties such as size, shape,
deformability, and potentially other intrinsic characteristics.
However, a rational design of such devices requires a detailed
understanding of the flow behavior of different particles in
complex geometrical DLD structures.

In general, a DLD device consists of a row-shifted array
of micron-sized pillars (or posts) residing in the flow channel.
As shown in Fig. 1, the posts are arranged in different rows
and each row is shifted laterally with respect to the previous
one. The geometry and arrangement of posts (e.g., post shape,
post gap G, row shift ∆λ) determine a critical particle size
Dc for the DLD device. According to the theory,2 particles

a)Author to whom correspondence should be addressed. Electronic mail:
d.fedosov@fz-juelich.de

smaller than Dc tend to move in the direction of flow known as
“zigzag mode,” whereas particles larger than Dc are laterally
displaced and move along the post array gradient known as
“displacement mode.” In this way, different particles can be
separated by collecting them at different outlets of a DLD
device and thus, the knowledge about critical size allows the
design of devices for sorting specific sizes of rigid spherical
particles. Recently, a third motion named “mixed mode”
has been observed in experiments and simulations,9,10 which
shows an irregular alternation of zigzag and displacement
modes. The erratic nature of the mixed mode may smear
the otherwise deterministic nature of a DLD device and
consequently complicate device design and application.

The deterministic separation mechanism described above
functions well for rigid spherical particles whose sizes remain
constant under various experimental conditions (e.g., flow
rate). In practice, it is desirable to separate more exotic
particles with different rigidities and shapes; for instance, red
blood cells (RBCs) are soft and non-spherical. Particles with
various rigidities will deform to a different extent under the
shear forces experienced in flow. Examples include vesicles in
structured microchannels,11 RBCs in cylindrical vessels,12–15

and synthetic microcapsules in shear flow.16–18 Thus, the effec-
tive size of soft particles will vary depending on their location
in the complex flow field within the post array. Furthermore,
particles with non-isotropic shapes have varying effective
size depending on their orientation relative to the post array.
For example, Beech et al.19 have presented an orientation-
and deformation-based separation of RBCs achieved by the
reduction of the channel depth and the change of flow rate
within the device, respectively. These two uncertainties in

0021-9606/2015/143(24)/243145/11/$30.00 143, 243145-1 © 2015 AIP Publishing LLC
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FIG. 1. Schematic illustration of the geometry and structures of simulated
DLD systems. (a) Typical post shapes (circle, square, diamond, and triangle)
with W =H = 15 µm. (b) DLD array with circular posts. The geometry
is defined by the post center-to-center distance λ = 25 µm, the post gap
G = 10 µm, and the row shift ∆λ. The red arrows indicate the direction of
flow. (c) 2D models of RBCs and rigid circular particles.

effective size do not necessarily destroy the determinism of a
DLD device, but they certainly make it harder to predict which
mode of motion a particle will adopt in transit through a DLD
device. In addition, there is no clear evidence that conven-
tional circular post arrays are the best option, which makes
the geometry of posts an important additional parameter to
explore. Zeming et al.20 have created a DLD device with
I-shaped posts in order to induce RBC rotation, which conse-
quently increases the hydrodynamic size of RBCs and alters
their behavior within the DLD device. Al-Fandi et al.21 have
proposed airfoil-like and diamond-like post shapes and found
that the airfoil post array appears to be better for the reduction
of clogging and deformation of soft particles. Loutherback
et al.3,4 have demonstrated that the use of a triangular post
array can significantly enhance the performance of DLD
devices by reducing their clogging, lowering hydrostatic pres-
sure requirements, and increasing the range of displacement-
type dynamics. In view of these studies, post shape plays an
important role in controlling the separation effectiveness of
various particles by modifying the flow profiles within DLD
arrays and introducing novel particle trajectories.

Attempting to experimentally realize the transit modes for
the myriad of combinations of particle shapes and properties,
device geometries, and post shapes would be very expensive
and extremely time-consuming. Simulations provide a
valuable alternative, allowing systematic exploration of
particle transit behavior through novel post-array geometries.
Several numerical simulations22–24 have investigated the
behavior of elastic capsules and RBCs in DLD devices
with circular post arrays indicating that an effective diameter
of a deformable particle may change with the flow rate

or equivalently that the deformation of such particles
depends on the stresses and profile of microfluidic flow.
In this study, we employ coarse-grained methods and two-
dimensional (2D) models to simulate the motion of rigid
spherical particles and deformable RBCs in DLD devices
with different post geometries. Since such DLD geometries
are at the microscale, simulation techniques on atomic or
molecular levels become unfeasible. Therefore, we employ
a coarse-grained hydrodynamics method at the mesoscale
called dissipative particle dynamics,25,26 allowing us to access
much longer length and times scales through a coarse fluid
representation. The models for suspended particles are also on
a much coarser level than a representation on the molecular
scale. Coarse-grained simulation approaches are ideally suited
for such an investigation, because they not only allow to reach
the required length- and time scales but also make it possible
to abstract from atomistic and molecular detail, which is
irrelevant for the design of devices. Another simplification is
the use of 2D simulations, which needs to be exercised with
caution, since fluid flow and the motion and deformation of
soft particles in microfluidics is inherently three-dimensional
(3D). There are several simulation studies, such as motion
of RBCs in microchannels15,27 and the margination of white
blood cells in blood flow,28–30 which have shown that 2D
and 3D simulations lead to qualitatively consistent results.
This supports the idea that 2D models should also capture the
essential physics of particle separation in DLDs and provide
valuable insights. The main advantage of 2D simulations
in comparison to 3D models is a comparatively low
computational cost, which allows for systematic exploration
of many relevant parameters in DLDs.

As an initial proof of the method, we compare simulation
results for hard spherical particles in a circular-post array with
experimental results. We demonstrate by this comparison that
for this case, 2D simulations provide near quantitative results
due to the symmetry of spherical particles. This is not an
obvious result, since the flow field near a spherical particle in
3D is of course not the same as that near a circular particle
in 2D. Then, the effect of post shape on the transit modes
of rigid spherical particles is examined including diamond,
square, and triangular posts. The simulation results confirm
that a deterministic picture of the three modes described
above also holds for the DLD devices with non-circular
post shapes. However, the transition from displacement to
zigzag mode may shift for different post geometries in
comparison with the circular ones. To describe this transition,
an empirical formula (Eq. (8)) by Davis39 is generalized
in order to accommodate the results for other post shapes.
Subsequently, similar sets of simulations are performed
for RBCs to investigate the effects of deformability and
orientation in relation to the critical diameters for hard spheres.
Simulations show that the transit of RBCs through a DLD
device strongly depends on their deformation and dynamics
in flow, in agreement with previous simulation studies.22–24

Thus, the simple description of particle transit based on the
characteristic critical size becomes invalid. The predictions
for particle transit must instead depend on a number of
conditions including device geometry and structure, flow rate,
and mechanical properties of the particle. Even though these
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effects significantly complicate such systems, they also lead
to new opportunities in particle sorting and detection. Hence,
we expect that new sorting designs, which use particle shape,
deformability, and other intrinsic properties as a target, can be
developed.

II. METHODS AND MODELS

To model fluid flow within a microfluidic device, we
employ the dissipative particle dynamics (DPD) method,25,26

which is a mesoscopic particle-based hydrodynamics
approach. Suspended particles are represented by a bead-
spring model using a ring-like structure. The particles are
coupled to fluid flow by friction forces, which are naturally
part of DPD.

A. Simulation method

DPD25,26 is a mesoscopic simulation technique which has
been successfully applied to study various complex fluids.31,32

In DPD, a simulated system consists of a collection of N fluid
particles with mass mi, position ri, and velocity vi and each
individual particle represents a cluster of atoms or molecules.
The dynamics of DPD particles is governed by Newton’s
second law of motion as follows:

dri = vidt,

dvi =
1

mi


j,i

Fi jdt =
1

mi


j,i

(FC
i j + FD

i j + FR
i j)dt, (1)

where Fi j is the total force acting between two particles i and
j within a selected cutoff radius rc. The total force is a sum
of three pairwise forces: conservative (FC

i j), dissipative (FD
i j),

and random (FR
i j) forces given by

FC
i j = ai j(1 − ri j/rc)r̂i j,

FD
i j = −γi jωD(ri j)(vi j · r̂i j)r̂i j,

FR
i j = σi jω

R(ri j)ξi jdt−1/2r̂i j,
(2)

where vi j = vi − v j, ri j = ri − r j, ri j = |ri j |, and r̂i j = ri j/|ri j |.
The coefficients ai j, γi j, and σi j characterize the strength of
the conservative, dissipative, and random forces, respectively.
Both ωD(ri j) and ωR(ri j) are distance-dependent weight
functions. ξi j is a random number generated from a Gaussian
distribution with zero mean and unit variance.

The dissipative and random forces act together as a
thermostat to maintain an equilibrium temperature T and
generate a correct equilibrium Gibbs-Boltzmann distribution.
Therefore, they must satisfy the fluctuation-dissipation
theorem26 given by the conditions ωD(ri j) = [ωR(ri j)]2 and
σ2 = 2γkBT . In the original DPD method, the weight function
has been chosen as ωR(ri j) = (1 − ri j/rc)k, with k = 1, while
different choices for this exponent have been made in other
studies33,34 in order to increase the viscosity of the DPD
fluid. The viscosity of a DPD fluid has been calculated
using a reverse-Poiseuille flow setup,35 where the flow in
two halves of a periodic computational domain is driven in
opposite directions. Equations of motion (1) are integrated
using the velocity-Verlet algorithm.36 Table I presents the
DPD parameters used in our simulations.

TABLE I. DPD fluid parameters used in simulations. Mass and length for
DPD fluid are measured in units of the fluid particle mass m and the cutoff
radius rc. n is the fluid’s number density, a is the repulsive-force coefficient,
γ is the dissipative-force coefficient, k is the weight-function exponent, and
η is the fluid’s dynamic viscosity. In all simulations, we have set m = 1,
rc = 1.5, and the thermal energy kBT = 1.

nr2
c arc/kBT γrc/

√
mkBT k ηr2

c/
√
mkBT

11.25 60 30 0.15 325

B. Suspended particles

We employ 2D simulations, where both rigid circular
particles and RBCs are modeled as closed bead-spring chains
with Nv particles connected by Ns = Nv springs. The spring
potential is given by

Vsp =

Ns
j=1



kBTlm
4p

(3x2
j − 2x3

j)
(1 − x j) +

kp

l j


, (3)

where l j is the length of the spring j, lm is the maximum spring
extension, x j = l j/lm ∈ (0,1), p is the persistence length, kBT
is the energy unit, and kp is the spring constant. A balance
between the two force terms in Eq. (3) leads to a nonzero
equilibrium spring length l0. Alternatively, a selected l0 defines
a ratio between the coefficients p and kp, while their absolute
values determine the spring strength such that the Young’s
modulus of this spring is given by

Y = l0

(
∂2Vsp

∂l2

)
|l=l0 =

kBT x0

p

(
1

2(1 − x0)3 + 1
)
+

2kp

l2
0

, (4)

where x0 = l0/lm.
To incorporate membrane bending rigidity, a bending

energy29 is applied as

Vbend =

Ns
j=1

kb[1 − cos(θ j)], (5)

where kb is the bending constant and θ j is the instantaneous
angle between two adjacent springs sharing the common
vertex j. Furthermore, an area constraint is imposed for each
ring polymer given by

Varea =
ka
2
(A − A0)2, (6)

where ka is the area constraint coefficient, A0 is the desired
enclosed area, and A is the instantaneous area.

The combination of the targeted area A0, the contour
length L0 = Nsl0, and the bending constant kb controls the
shape and rigidity of cells and circular particles. A circular
particle is characterized by a diameter DSP = L0/π. To make a
circular particle nearly rigid, its targeted area A0 has been set to
4% larger than the area of a circle with the contour length L0.
This choice results in a considerable membrane tension due to
the competition of spring and area-constraint forces making
the particle virtually non-deformable. A RBC is characterized
by the effective diameter DRBC = L0/π and the reduced
area A∗ = 4A0/(πD2

RBC) = 0.46 leading to a typical biconcave
shape. The other particle parameters used in simulations are
given in Table II.
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TABLE II. Model parameters for suspended particles. Nv is the number of vertices, lm is the maximum spring
extension, l0 is the equilibrium spring length, and D is a characteristic particle diameter which denotes DSP or
DRBC. κ is the macroscopic bending rigidity and κ = kbl0 with kb being the bending constant, Y is the Young’s
modulus, A0 is the targeted area, and ka is the area constraint coefficient.

Nv lm/l0 κ/(kBTl0) YD/kBT A0/D
2 kaD

2/kBT

Circles 30 . . .60 2.2 500 180 000 1.04π/4 97 000
RBCs 50 2.2 50 9 000 0.36 37 430

C. Coupling between fluid and suspended particles

Coupling between the fluid flow and suspended particles
is achieved through viscous friction using the dissipative (FD)
and random (FR) DPD forces. The repulsive-force coefficient
for the coupling interactions is set to zero. The strength γ of
the dissipative force is computed such that no-slip BCs are
enforced. The derivation of γ is based on the idealized case
of linear shear flow over a part of a membrane with the length
L. In a continuum description, the total shear force exerted by
the fluid on the length L is equal to Lηγ̇, where γ̇ is the local
wall shear-rate. The same fluid force has to be also transmitted
onto a discrete surface structure having NL vertices within the
length L. The force on a single vertex exerted by the fluid can
be found as FA =


Ah

ng(r)FDdA, where n is the fluid number
density, g(r) is the radial distribution function of fluid particles
with respect to the membrane particles, and Ah is the half circle
area of fluid above the membrane. The total shear force on
the length L is equal to NLFA. The equality NLFA = Lηγ̇
results in an expression of the dissipative force coefficient in
terms of the fluid density and viscosity, wall density NL/L,
and rc. Under the assumption of linear shear flow, the shear
rate γ̇ cancels out. This formulation results in satisfaction of
the no-slip BCs for the linear shear flow over a flat surface;
however, it also serves as an excellent approximation for
no-slip at the membrane surface.37 Since the conservative
interactions are turned off, the radial distribution function is
structureless such that g(r) = 1.

D. Simulation setup

A DLD device is simulated using a single obstacle and
suspended particle within the computational domain. This is
possible due to periodic repetition of the device geometry as
illustrated in Fig. 1(b). Thus, we employ periodic boundary
conditions (BCs) both in the flow and row-shift directions
denoted by x and y, respectively. However, for the BCs in x, a
shift in the y direction is necessary in order to mimic the shift
between two consecutive rows of posts. Here, such a shift is
introduced for every boundary-crossing interaction or event.

Several obstacle geometries are considered, including
a circle, a square, a diamond, and a triangle depicted in
Fig. 1(a). Figure 1(a) also defines the center-of-mass for
these post geometries and their sizes denoted by W and
H , W = H = 15 µm in our simulations. No-slip wall BCs
are modeled by a layer of frozen particles with a thickness
of rc whose equilibrium structure characterized by the radial
distribution function is the same as that of the suspending fluid.
This minimizes problems with near-wall particle interactions
(e.g., significant fluid-density fluctuations near the wall) which

may occur due to an improper distribution of conservative
forces. To prevent wall penetration, fluid particles as well
as suspended structures are subject to reflection at the fluid-
solid interface. Bounce-back reflections are employed, since
they provide a better approximation for the no-slip BCs in
comparison to specular reflection of particles. To ensure that
no-slip BCs are strictly satisfied, we also add a tangential
adaptive shear force38 which acts on the fluid particles in a
near-wall layer of thickness rc.

The flow in the x direction is driven by a force applied
to each fluid particle. The force value can be tuned to obtain
a flow rate of interest. The shift between consecutive rows
results in a nonzero net flow in the y direction. However,
real DLD devices have a limited width and the net flow in
the y direction is prohibited by its side walls. To mimic this
situation, we have also introduced a force in y direction which
can adapt to follow the condition of no net-flow in the y
direction. Thus, the force in x direction controls the flow
rate, while the force in y direction ensures no net flow in y
direction.

In order to relate simulation and physical parameters, we
need to define a time scale. For the case of rigid particles, a
time scale can be defined through the fluid viscosity. However,
in this case under the assumption of Stokes flow, different flow
rates lead to flow profiles which can be scaled to each other
due to the linearity of the Stokes equation. Thus, the time
scaling here is not crucial. In case of flowing RBCs, different
flow rates would result in different cell deformations and need
to be looked at separately. In order to define a time scale in
this case, we use a characteristic RBC relaxation time defined
as

τ =
ηD3

RBC

κ
. (7)

Using this time scale we can, for instance, relate simulation
and physical flow rates. Typical values for healthy RBCs are
DRBC = 6.1 µm, η = 1.2 × 10−3 Pa s is the viscosity of blood
plasma, and κ lies within the range of 50–70kBT for the
physiological temperature T = 37 ◦C.

III. RESULTS AND DISCUSSION

A. Separation of rigid spherical particles in circular
post arrays

The dynamics of rigid spherical particles flowing in
conventional circular-post arrays is rather well understood.
Two transport modes, zigzag and displacement, were
experimentally observed depending on particle size.7 To
estimate the critical particle size Dc for the transition between
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the two transport modes, an empirical formula has been
suggested based on results of a systematic experimental
study39 by varying the gap size and particle diameter and
assuming a parabolic flow profile between two neighboring
posts. The proposed formula is given by39

Dc = 1.4Gε0.48, (8)

where ε is the row-shift fraction defined as ε = ∆λ/λ. In
the current study, 2D mesoscopic simulations are employed
to investigate the effect of post shapes on the separation of
spherical and non-spherical particles. Before the exploration
of a more complex geometry and structure of posts and
particles, careful testing and validation of the simulated
system are essential. For this purpose, we have studied
the separation of rigid spherical particles with 7 different
diameters (DSP ∈ [2.78,5.59] µm) in circular post arrays
by varying the row shift. A detailed comparison between
our simulation results and the predictions obtained from the
empirical formula, Eq. (8), is performed in order to assess the
quality of simulation predictions.

Figure 2(a) presents typical trajectories of a spherical
particle with DSP = 5.12 µm in circular post arrays at different
row shifts. It is clear that the particle moves according to the

FIG. 2. (a) Typical trajectories of a 2D rigid spherical particle with DSP
= 5.12 µm in the conventional circular post arrays at different row shifts
∆λ. (b) The separation index Is, which is defined as the ratio of the lateral
displacement of particles per post to the row shift, for the corresponding
particle sorting as a function of the row-shift fraction. Error bars are indicated
for all data points.

displacement mode at low row shifts (∆λ . 2.5 µm) and
follows the zigzag mode for larger row shifts (∆λ & 3.0 µm).
However, it is interesting to note that at some intermediate
values of the row shift, particle trajectories exhibit an irregular
alternation between displacement and zigzag motions, which
will be referred to as “mixed mode” subsequently. Similar
motion has been also observed in experiments2,9,10,40 and
previous simulations.9,10 Huang et al.2 suggested that this
behavior can be attributed to Brownian motion (or diffusion)
of particles between different streamlines. We have performed
several simulations using a larger ambient temperature in DPD
(approximately by a factor of two), which leads to an increased
diffusivity of suspended particles. These results qualitatively
indicate that the mixed-mode region becomes slightly wider
in the row-shift fraction. This is not very surprising, since as
the displacement-to-zigzag transition is approached, particle
diffusion might make a difference, leading to a widening of
the transition region (or the mixed-mode region). In contrast,
Kulrattanarak et al.9,10 have proposed that the occurrence of
mixed mode is due to the asymmetric flowline distribution
between posts in certain DLD devices with Gx/Gy ≤ 3 and
Dpost/Gy > 0.4, where Gx and Gy are the post gap sizes
in x and y directions, respectively. The geometry of our
simulated DLD array is in this range with Gx = Gy = G and
Dpost/Gy = 1.5. It is important to note that this proposition
is based on fluid-flow simulations with a point-like tracer
particle; however, for a finite-size particle (e.g., with a
diameter comparable to the gap size), the disturbance field
around the particle has to be taken into account and may
significantly contribute to the particle motion within a DLD
array. Furthermore, our simulation method naturally includes
thermal fluctuations, and therefore, particle diffusion cannot
be excluded as a potential contribution to the mixed mode.

To quantitatively characterize the motion of particles
within DLD, we introduce a dimensionless parameter called
“separation index” Is, defined as the ratio of the lateral
displacement of particles per post to the row shift. For the
ideal displacement mode, Is should be close to unity, since
particles are forced to displace laterally along the shift gradient
of the post array. For the ideal zigzag mode, Is should be close
to zero as the particles move with the flow without a significant
net lateral displacement. The concept behind this parameter is
similar to the “migration angle”2,9,10 or “separation index”41

used in experiments. Due to the existence of mixed mode,
the value of Is in our simulated trajectories is not just 1 or
0. As illustrated in Fig. 2(b), there exist a small plateau with
intermediate values of Is and some variation, indicating the
mixed mode. Moreover, the value of Is is found to remain
in the range of 0.3–0.6 regardless of the initial position of
a particle and simulation time, which further confirms the
existence of the mixed mode. Away from the mixed region, Is
quickly attains values close to 1 or 0. In view of these results,
the magnitude of Is ∈ [0.3,0.6] is used as a quantitative
measure for the mixed mode and the transition to/from zigzag
or displacement dynamics. Therefore, Is > 0.6 and Is < 0.3
are chosen to define the displacement and zigzag modes,
respectively.

The identical strategy and analysis have been employed
to assess the separation of all the seven particle diameters in
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circular post arrays. The observed modes as a function of the
row shift fraction (ε) and the normalized particle diameter
(DSP/G) are summarized in Fig. 3. It is apparent that the
critical particle sizes calculated from the empirical formula
of Eq. (8) approximately reside in the region of mixed mode
which defines the transition from the zigzag to displacement
mode. The good agreement between our simulations and
experimental results of Davis39 validates the 2D model
and shows that it is able to capture the essential physical
features required to correctly describe the particle separation
in conventional DLD devices with circular posts. Therefore,
further simulations with modifications of the post shapes
and particle properties should provide reliable and valuable
guidelines for the performance of different DLD devices.

B. Effect of post shapes on the separation of rigid
spherical particles

Diamond, square, and triangular posts have also been
studied to explore the effect of post shape on the flow behavior
of rigid spherical particles within DLDs. In comparison with
the circular posts, the common geometric feature of these three
posts is the sharp edges of the post surfaces whose curvature,
position, and symmetry all strongly affect the flow properties
in post gaps. Indeed, significant changes are observed in the
flow profiles for different post arrays, as depicted in Fig. 4. The
plots show that the region of the largest flow velocity within
the post gaps resembles elliptical, circular, cigar-like, and
pear-like patterns for circular, diamond, square, and triangular
posts, respectively. Moreover, it is worth mentioning that in
the square-post array, there is a small region with nearly zero
flow rate in the gap between adjacent columns. All these
changes must alter the motion of particles through the post
arrays and consequently influence the separation efficiency in
DLD devices.

A collection of the different transit modes for rigid
spherical particles in the diamond- and square-post arrays is
shown in Fig. 5. In comparison with the behavior in circular-

FIG. 3. Mode diagram for rigid spherical particles in circular post arrays as
a function of the row shift fraction (ε) and the normalized particle diameter
(DSP/G). The predicted critical size from the empirical formula in Eq. (8) is
drawn by the solid line.

FIG. 4. Comparison of flow velocities (x component) in DLD arrays with
(a) circular, (b) diamond, (c) square, and (d) triangular posts at the row shift
fraction of ε = 1/8. All velocities in the flow direction (x axis) are normalized
by the maximum value of velocity observed in the square post array. Red
regions represent the high flow rate, while the dark blue regions correspond
to the zero flow velocity at the boundaries with no-slip condition.

post arrays, the transition from the zigzag to displacement
mode is shifted slightly or significantly to a higher value
of the row-shift fraction ϵ in the diamond- or square-post
arrays, respectively, indicating a reduction of the critical size
in these devices. These simulation results are consistent with
the experimental and numerical studies.3,4,20,42 The reduced
critical size can be understood intuitively on basis of the
change of the flow profiles induced by the post shapes.
According to the theory in Refs. 2, 7, and 39, fluid flow in the
post gap can be split into several (N = 1/ε) streams carrying
equal volumetric flow rate. The width D f ,1 of the first stream
directly next to the post (see Fig. 4) is assumed to correspond
to the critical particle radius for the transition from the zigzag
to displacement mode. In general, D f ,1 is wider in comparison
to middle streams in order to accommodate more fluid flow,
since the first stream is at the wall with no-slip boundary
conditions. For diamond-shaped posts, the existence of sharp
edges in comparison to the smooth bending of a circular-post
surface leads to a smaller D f ,1 and a smaller critical particle
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FIG. 5. Mode diagram for the rigid spherical particles in (a) diamond and (b)
square post arrays as a function of the row shift fraction (ε) and the normal-
ized particle diameter (DSP/G). Critical size from the empirical formula in
Eq. (8) is drawn by the solid line.

size. In contrast, the flat edges of the square-shaped post
should smoothen the velocity distribution and consequently
induce a larger critical size, which is in contrast to our
numerical results and observations in Fig. 5. In light of this
seeming contradiction, we define another stream wherein the
fluid moves zigzag-like from the top to the lower channel and
denote the corresponding width as D f ,z (see Fig. 4(c)). For
the circular, diamond, and triangular posts, D f ,z ≃ D f ,1 has
been measured, while for the square posts, D f ,z is found to be
10%–20% smaller than D f ,1 independently of the row shift.
Hence, a possible reason for a strong reduction of the critical
particle size in square-post arrays is that the sharp corners of
square posts reside in both the inlet and outlet of the post gap
and induce a small region with nearly zero flow rate in the gap
between adjacent post columns. It is clear from Fig. 4 that for
the circular, diamond, and triangular posts, the flow rate in the
gap between adjacent post columns is significantly larger than
that for the square posts. In this way, the original first stream
is seriously obstructed, and therefore, a significant reduction
of critical particle size is observed for square-post arrays.

Recently, Wei et al.42 proposed a general formula to
estimate the critical particle sizes of DLD arrays with different

post shapes by introducing a shape-dependent prefactor to
Eq. (8). However, this parameter is simply obtained by data
fitting as a function of the row shift and a geometric parameter
of the gap between adjacent post columns, which is not
sufficient to describe the geometric features of post shapes.
For example, their numerical studies have shown that the
shape factor and the resulting formula appear to be the same
for square- and I-shape posts, which is in contrast with the
experimental observations.20 Additionally, the critical particle
size from their formula42 used for square post arrays is found
to significantly deviate from our predictions in most cases.
In view of these differences, we propose a more general
formula

Dc = αGεβ, (9)

where the dimensionless parameters α and β are geometric
factors determined by the shape and arrangement of posts.
For the conventional circular posts, α = 1.4 and β = 0.48 as
in Eq. (8). For the diamond and square posts in Fig. 5, the
best fitting curves are obtained for the parameters α = 1.4, β
= 0.52 and α = 1.4, β = 0.69, respectively. Interestingly, the
coefficient α remains essentially unaffected for circular,
diamond, and square posts.

Unlike the symmetric shapes discussed above, the
triangular posts break the top-bottom symmetry, see Fig.
1(a). Accordingly, an asymmetric flow profile with a skewed
parabolic shape is induced through the gap, as can be seen from
the pear-like pattern shown in Fig. 4(d). This feature results
in two distinct critical particle sizes depending on the flow
direction or row shift, which is not the case for the symmetric
posts. Alternatively, the change in the flow direction or row
shift for triangular posts is equivalent to turning the triangular
posts upside down. As fluid moves forward in the triangular-
post array with a positive row shift (see Fig. 1(b)), one
critical particle size should be determined by the stream width
adjacent to the top vertex of a triangle. However, for a reversed
flow direction (from right to left) with negative row shift,
another critical size should be governed by the stream width
just above the flat bottom edge, and the corresponding value of
the critical size can be expected to be smaller than that for the
previous flow direction (from left to right). This tendency is
in accordance with our simulation results as illustrated in Fig.
6(a). For positive row shift, the transition between the zigzag
and displacement modes is shifted to higher values of row
shifts, indicating a reduced critical particle size compared to
that for circular posts. In contrast, an increased critical particle
size is observed for negative row shifts. The fits in Fig. 6(a)
using Eq. (9) correspond to parameters α = 1.4, β = 0.44 and
α = 1.4, β = 0.61 for the negative and positive row shifts,
respectively.

Figure 6(b) presents the separation index Is for triangular-
post arrays. The value of Is not only characterizes the mode
of particle motion but also provides the physical lateral
displacement (i.e., Is∆λ) of a particle per single row of posts.
The value of Is also provides guidance on the design of a DLD
device. For instance, in case of the triangular-post array with
| ∆λ |= 4 µm (ε = 0.16) in Fig. 6(b), a smaller particle with
DSP = 3.72 µm is in the zigzag mode with Is ≈ 0, a particle
with DSP = 4.65 µm is in the mixed mode with Is ≈ 0.5, and
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FIG. 6. (a) Mode diagram for the rigid spherical particles in triangular-post
arrays as a function of the row shift fraction (ε) and the normalized particle
diameter (DSP/G). (b) Typical behavior of the separation index Is as a
function of the absolute value of the row-shift fraction.

a particle with DSP = 5.12 µm is in the displacement mode
with Is ≈ 1. Thus, the choice of such shift with ∆λ = 4 µm
within a DLD is advantageous for the separation of these three
particle sizes. An analogous choice for optimal row shifts can
be also made for the case of negative row displacements.
An interesting observation in Fig. 6(b) is that the transition
between the displacement and zigzag modes appears to be
much sharper for negative in comparison to positive row
shifts.

C. Motion of RBCs in different DLD arrays

So far we have focused on the motion of rigid spherical
particles within DLD arrays. However, many bioparticles and
cells of interest are non-spherical and deformable, and their
shape and deformability are well known to largely influence
their trajectories in DLD devices.5,6,19,43 To better understand
the behavior of flexible particles in flow within DLDs, we have
performed a number of simulations using a 2D RBC model
for various post shapes including circular-, diamond-, and
square-post arrays. Since RBCs are deformable, an effective
size denoted as Deff is defined to characterize the transition of
RBCs from the zigzag to displacement mode. Figure 7 shows
the separation index for RBCs within circular, diamond, and

FIG. 7. Typical distributions of the separation index Is for RBCs within
circular, diamond, and square post arrays as a function of the row shift
fraction.

square post arrays. We find that the transition from the zigzag
to displacement mode for RBCs is at ∆λ = 1.51 ± 0.05 µm,
1.07 ± 0.18 µm, and 3.46 ± 0.33 µm for circular-, diamond-,
and square-post arrays, respectively. According to our fits,
these row-shift values correspond to Deff = 3.65 ± 0.07 µm,
2.65 ± 0.14 µm, and 3.50 ± 0.15 µm, respectively. These
effective sizes lie between the thickness and diameter of
a RBC, indicating that RBCs deform and display different
dynamics in various flow fields induced by the post shapes.

Figures 8 and 9 illustrate how RBCs move and deform
in the zigzag and displacement modes in different post
arrays. In the zigzag mode (Fig. 8), there is usually one
flipping motion in each zigzag period, which increases the
effective size of RBCs and in turn facilitates the jump of
RBCs from the top to the bottom stream next to the post.
This process can be occasionally accomplished by a dramatic
deformation, as depicted in the first zigzag motion in Fig. 8(c).
After that, RBCs usually slip smoothly past the subsequent
posts by slightly deforming along the geometry of a post. If
Deff > 2D f ,1, RBCs enter the adjacent stream and flow above
the next post, resulting in the displacement motion depicted
in Fig. 9. It is important to note that when Deff ≫ 2D f ,1 in the
square-post array, the displacement motion of RBCs changes
from slipping around the posts (see Figs. 8(a) and 8(b)) to
avoiding any contact with the post and moving quickly with
an orientation parallel to the gradient of array (Fig. 8(c)). This
novel behavior is due to the cigar-like flow profile in the gap,
which resembles flow in a short cylindrical microchannel. In
microchannel flow, RBCs migrate away from the channel walls
due to hydrodynamic interactions of RBCs with the walls,
which is often referred to as lift force.44–46 If Deff < 2D f ,1,
RBCs move along the zigzag path of the first stream. Here,
the flow profile in the gap between the adjacent post columns
plays an important role in deforming RBCs and consequently
influences their flow path. As an example, for the case of
square posts in Fig. 8(c), after slipping past the post, RBCs
subside gradually from the top channel and flip into the
lower channel, which is clearly different from the motions in
circular- and diamond-post arrays.
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FIG. 8. Snapshots of typical zigzag tra-
jectories of RBCs in DLD arrays with
(a) circular, (b) diamond, and (c) square
posts at ∆λ = 5.0 µm. The regular alter-
nation of black and red RBCs represents
sequential frames with an interval of
0.023τ.

To describe the shape and morphology change of RBCs
in DLD arrays, a parameter called asphericity δ is used to
measure the deviation from spherical (or circular) geometry,

δ =
(λ1 − λ2)2
(λ1 + λ2)2 , (10)

where λ1 and λ2 are the square root of two non-zero
eigenvalues of the squared radius-of-gyration tensor. The
value of δ varies from 0 to 1, corresponding to a perfect
circle and a strongly elongated object, respectively. For a
biconcave 2D RBC shape in equilibrium, the asphericity is
equal to δ ≈ 0.29. Following this definition, Fig. 10 presents
the morphology change of RBCs under different conditions
in terms of a probability density. It is apparent that with
the transition from the displacement to zigzag mode with

increasing row shift, RBCs are subject to more deformation
in both circular- and square-post arrays, as indicated by the
higher probability for lower asphericities shown in Figs. 10(a)
and 10(c). However, RBCs display significant deformation in
both zigzag and displacement modes, which is also confirmed
by the flipping motion in Figs. 8(b) and 9(b).

In view of these observations, a zigzag period can be
divided into two stages: (i) particle motion across the gap
toward the first stream above the post and (ii) flowing along
the zigzag path of the stream. For rigid spherical particles,
it is a straightforward and deterministic process based on
particle size. For soft particles or cells however, it can
be very complicated, since the deformation and motion of
particles are highly sensitive to the flow field within the
post array. This also indicates that the flow rate in a DLD

FIG. 9. Snapshots of typical displace-
ment trajectories of RBCs in DLD
arrays with (a) circular posts at ∆λ
= 1.25 µm, (b) diamond posts at ∆λ
= 1 µm, and (c) square posts at ∆λ
= 1.25 µm. The regular alternation of
black and red RBCs corresponds to
sequential frames with an interval of
0.023τ.
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FIG. 10. Distributions of the asphericity (δ) of RBCs in DLD arrays with (a)
circular, (b) diamond, and (c) square posts for various row shifts.

device becomes an additional parameter to consider for the
separation of soft particles and cells. The effect of flow rate on
the RBC motion within a DLD device with circular posts has
been already investigated experimentally,19 showing a strong
dependence. In another experimental study, it has been found
that a rotational motion of a non-isotropic particle induced by
I-shape posts might be advantageous for particle sorting.20 A
similar rotational motion has been also observed in our study
for RBCs in particular for diamond- and square-shaped posts.
As a conclusion, the notion of a single critical size for particle
separation, as suggested for the rigid spherical particles, is
likely to be an oversimplified concept when applied to non-
isotropic, deformable particles and cells. Deformable particles
and cells clearly show very rich dynamics in DLD devices,
whose underling mechanisms still need to be further explored
in order to reach the understanding required for a rational
design of DLD devices for sorting.

IV. SUMMARY AND CONCLUSIONS

We have presented a systematic study of particle motion
within DLD arrays using a coarse-grained mesoscopic

modeling approach in two spatial dimensions. Several obstacle
geometries including circular, diamond, square, and triangular
posts and particle sizes were considered. The simulation
results for rigid spherical particles in circular-post arrays are
found to be in a very good agreement with the available
experimental data. The dynamics of spherical particles can
be divided into the three major modes: displacement, mixed,
and zigzag. The displacement mode is characterized by the
motion where a particle simply follows the gradient of row
shift within a device with a separation index close to unity. The
zigzag mode corresponds to the particle motion with nearly
zero lateral displacement within the device, which can be
identified by a nearly zero separation index. The mixed mode
results in an intermediate state with alternating displacement
and zigzag sections and can be characterized by the separation
index Is ∈ [0.3,0.6]. The transition from the displacement to
zigzag mode in circular-post arrays is well captured by an
empirical formula (Eq. (8)), which defines a critical particle
size.

Simulations of diamond-, square-, and triangular-post
arrays display significant differences in particle critical size
in comparison with the circular-post devices. The flow field
strongly depends on the geometry of a device and consequently
modifies particle trajectories in the corresponding post arrays.
However, the behavior of a rigid spherical particle in these
devices can still be well described by the three characteristic
modes, and the transition from the displacement to the zigzag
mode is well captured by a generalized empirical formula
(Eq. (9)) with two fitting parameters. The possibility of a
unified empirical description for the transition indicates that
qualitatively, the same flow mechanisms are of importance
in such devices, and all of them can be potentially used
for the sorting of rigid spherical particles with different
sizes. However, the flow details also matter when fine tuning
becomes important and some geometries might be preferable
depending on the problem of interest.

Finally, the flow behavior of deformable particles such
as RBCs has been investigated for different post geometries.
The simulations have shown that RBCs experience strong
deformations due to fluid flow, which determine their
corresponding mode of motion. In comparison to rigid
spherical particles, the transition from the displacement to
the zigzag mode becomes very broad with a significant part
devoted to the mixed mode. Also, the dynamics of RBCs (e.g.,
tumbling) in flow plays a significant role in determining their
traversal trajectory through a DLD device. Both dynamics and
deformation strongly depend on the device geometry, since it
is governed by local flow fields. In addition, it is expected that
different flow rates within a device should lead to distinct
behaviors of RBCs, making this an important parameter
for consideration. These results indicate that a simplified
description with a single critical size becomes invalid in case
of non-isotropic and deformable particles and/or cells. The
behavior of deformable particles in DLD devices is much
richer in comparison with the rigid spherical particles, which
not only brings additional complications but also provides
new opportunities. Thus, it is plausible to expect that non-
isotropic and deformable particles can be sorted based on
their deformability, geometry, and potentially other intrinsic
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properties. We expect that this research direction will receive
considerable attention in the near future.
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