000279819 001__ 279819
000279819 005__ 20210129221135.0
000279819 0247_ $$2doi$$a10.1039/C5SM01412C
000279819 0247_ $$2ISSN$$a1744-683X
000279819 0247_ $$2ISSN$$a1744-6848
000279819 0247_ $$2WOS$$aWOS:000359581400016
000279819 0247_ $$2altmetric$$aaltmetric:4299726
000279819 0247_ $$2pmid$$apmid:26221908
000279819 0247_ $$2Handle$$a2128/22847
000279819 037__ $$aFZJ-2015-07698
000279819 082__ $$a530
000279819 1001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b0$$ufzj
000279819 245__ $$aVirial pressure in systems of spherical active Brownian particles
000279819 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2015
000279819 3367_ $$2DRIVER$$aarticle
000279819 3367_ $$2DataCite$$aOutput Types/Journal article
000279819 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1450267706_16037
000279819 3367_ $$2BibTeX$$aARTICLE
000279819 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279819 3367_ $$00$$2EndNote$$aJournal Article
000279819 520__ $$aThe pressure of suspensions of self-propelled objects is studied theoretically and by simulation of spherical active Brownian particles (ABPs). We show that for certain geometries, the mechanical pressure as force/area of confined systems can be equally expressed by bulk properties, which implies the existence of a nonequilibrium equation of state. Exploiting the virial theorem, we derive expressions for the pressure of ABPs confined by solid walls or exposed to periodic boundary conditions. In both cases, the pressure comprises three contributions: the ideal-gas pressure due to white-noise random forces, an activity-induced pressure (“swim pressure”), which can be expressed in terms of a product of the bare and a mean effective particle velocity, and the contribution by interparticle forces. We find that the pressure of spherical ABPs in confined systems explicitly depends on the presence of the confining walls and the particle–wall interactions, which has no correspondence in systems with periodic boundary conditions. Our simulations of three-dimensional ABPs in systems with periodic boundary conditions reveal a pressure–concentration dependence that becomes increasingly nonmonotonic with increasing activity. Above a critical activity and ABP concentration, a phase transition occurs, which is reflected in a rapid and steep change of the pressure. We present and discuss the pressure for various activities and analyse the contributions of the individual pressure components.
000279819 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000279819 588__ $$aDataset connected to CrossRef
000279819 7001_ $$0P:(DE-Juel1)131045$$aWysocki, Adam$$b1$$ufzj
000279819 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2$$eCorresponding author$$ufzj
000279819 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C5SM01412C$$gVol. 11, no. 33, p. 6680 - 6691$$n33$$p6680 - 6691$$tSoft matter$$v11$$x1744-6848$$y2015
000279819 8564_ $$uhttps://juser.fz-juelich.de/record/279819/files/c5sm01412c-1.pdf$$yOpenAccess
000279819 8564_ $$uhttps://juser.fz-juelich.de/record/279819/files/c5sm01412c-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000279819 909CO $$ooai:juser.fz-juelich.de:279819$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000279819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000279819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131045$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000279819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000279819 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000279819 9141_ $$y2015
000279819 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000279819 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279819 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000279819 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2014
000279819 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279819 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000279819 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279819 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000279819 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000279819 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000279819 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000279819 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000279819 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279819 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000279819 9201_ $$0I:(DE-Juel1)VDB782$$kIFF-2$$lTheorie der Weichen Materie und Biophysik$$x1
000279819 980__ $$ajournal
000279819 980__ $$aVDB
000279819 980__ $$aUNRESTRICTED
000279819 980__ $$aI:(DE-Juel1)IAS-2-20090406
000279819 980__ $$aI:(DE-Juel1)VDB782
000279819 9801_ $$aFullTexts
000279819 981__ $$aI:(DE-Juel1)VDB782