001     279819
005     20210129221135.0
024 7 _ |a 10.1039/C5SM01412C
|2 doi
024 7 _ |a 1744-683X
|2 ISSN
024 7 _ |a 1744-6848
|2 ISSN
024 7 _ |a WOS:000359581400016
|2 WOS
024 7 _ |a altmetric:4299726
|2 altmetric
024 7 _ |a pmid:26221908
|2 pmid
024 7 _ |a 2128/22847
|2 Handle
037 _ _ |a FZJ-2015-07698
082 _ _ |a 530
100 1 _ |a Winkler, Roland G.
|0 P:(DE-Juel1)131039
|b 0
|u fzj
245 _ _ |a Virial pressure in systems of spherical active Brownian particles
260 _ _ |a London
|c 2015
|b Royal Soc. of Chemistry
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1450267706_16037
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The pressure of suspensions of self-propelled objects is studied theoretically and by simulation of spherical active Brownian particles (ABPs). We show that for certain geometries, the mechanical pressure as force/area of confined systems can be equally expressed by bulk properties, which implies the existence of a nonequilibrium equation of state. Exploiting the virial theorem, we derive expressions for the pressure of ABPs confined by solid walls or exposed to periodic boundary conditions. In both cases, the pressure comprises three contributions: the ideal-gas pressure due to white-noise random forces, an activity-induced pressure (“swim pressure”), which can be expressed in terms of a product of the bare and a mean effective particle velocity, and the contribution by interparticle forces. We find that the pressure of spherical ABPs in confined systems explicitly depends on the presence of the confining walls and the particle–wall interactions, which has no correspondence in systems with periodic boundary conditions. Our simulations of three-dimensional ABPs in systems with periodic boundary conditions reveal a pressure–concentration dependence that becomes increasingly nonmonotonic with increasing activity. Above a critical activity and ABP concentration, a phase transition occurs, which is reflected in a rapid and steep change of the pressure. We present and discuss the pressure for various activities and analyse the contributions of the individual pressure components.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wysocki, Adam
|0 P:(DE-Juel1)131045
|b 1
|u fzj
700 1 _ |a Gompper, Gerhard
|0 P:(DE-Juel1)130665
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1039/C5SM01412C
|g Vol. 11, no. 33, p. 6680 - 6691
|0 PERI:(DE-600)2191476-X
|n 33
|p 6680 - 6691
|t Soft matter
|v 11
|y 2015
|x 1744-6848
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/279819/files/c5sm01412c-1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/279819/files/c5sm01412c-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:279819
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131039
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131045
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130665
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOFT MATTER : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-2-20090406
|k IAS-2
|l Theorie der Weichen Materie und Biophysik
|x 0
920 1 _ |0 I:(DE-Juel1)VDB782
|k IFF-2
|l Theorie der Weichen Materie und Biophysik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-2-20090406
980 _ _ |a I:(DE-Juel1)VDB782
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)VDB782


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21