001     279851
005     20240610120630.0
024 7 _ |a 10.1021/acs.jpcc.5b06014
|2 doi
024 7 _ |a 1932-7447
|2 ISSN
024 7 _ |a 1932-7455
|2 ISSN
024 7 _ |a 2128/9603
|2 Handle
024 7 _ |a WOS:000361921600033
|2 WOS
037 _ _ |a FZJ-2015-07729
082 _ _ |a 540
100 1 _ |a Thalinger, Ramona
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Exsolution of Fe and SrO Nanorods and Nanoparticles from Lanthanum Strontium Ferrite La $_{0.6}$ Sr $_{0.4}$ FeO $_{3−δ}$ Materials by Hydrogen Reduction
260 _ _ |a Washington, DC
|c 2015
|b Soc.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1450277013_16034
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Formation of uniform Fe and SrO rods as well as nanoparticles following controlled reduction of La0.6Sr0.4FeO3−δ (LSF) and Ni-LSF samples in dry and moist hydrogen is studied by aberration-corrected electron microscopy. Metallic Fe and SrO precipitate from the perovskite lattice as rods of several tenths of nm and thicknesses up to 20 nm. Based on a model of Fe whisker growth following reduction of pure iron oxides, Fe rod exsolution from LSF proceeds via rate-limiting lattice oxygen removal. This favors the formation of single iron metal nuclei at the perovskite surface, subsequently growing as isolated rods. The latter is only possible upon efficient removal of reduction-induced water and, subsequently, reduction of Fe +III/+IV to Fe(0). If water remains in the system, no reduction or rod formation occurs. In contrast, formation of SrO rods following reduction in dry hydrogen is a catalytic process aided by Ni particles. It bears significant resemblance to surface diffusion-controlled carbon whisker growth on Ni, leading to similar extrusion rods and filaments. In addition to SrO rod growth, the exsolution of Fe nanoparticles and, subsequently, Ni–Fe alloy particles is observed. The latter have also been observed under static hydrogen reduction. Under strict control of the experimental parameters, the presented data therefore open an attractive chemically driven pathway to metal nanoarchitectures beyond the formation of “simple” nanoparticles.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gocyla, Martin
|0 P:(DE-Juel1)166087
|b 1
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 2
700 1 _ |a Klötzer, Bernhard
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Penner, Simon
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1021/acs.jpcc.5b06014
|g Vol. 119, no. 38, p. 22050 - 22056
|0 PERI:(DE-600)2256522-X
|n 38
|p 22050 - 22056
|t The @journal of physical chemistry / C
|v 119
|y 2015
|x 1932-7455
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/279851/files/acs.jpcc.5b06014.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/279851/files/acs.jpcc.5b06014.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/279851/files/acs.jpcc.5b06014.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/279851/files/acs.jpcc.5b06014.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/279851/files/acs.jpcc.5b06014.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/279851/files/acs.jpcc.5b06014.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:279851
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166087
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130695
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Free to read
|0 LIC:(DE-HGF)PublisherOA
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM C : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21