000279852 001__ 279852
000279852 005__ 20240610120630.0
000279852 0247_ $$2doi$$a10.1021/acs.nanolett.5b03057
000279852 0247_ $$2ISSN$$a1530-6984
000279852 0247_ $$2ISSN$$a1530-6992
000279852 0247_ $$2WOS$$aWOS:000364725400045
000279852 037__ $$aFZJ-2015-07730
000279852 082__ $$a540
000279852 1001_ $$0P:(DE-HGF)0$$aArán-Ais, Rosa M.$$b0
000279852 245__ $$aElemental Anisotropic Growth and Atomic-Scale Structure of Shape-Controlled Octahedral Pt–Ni–Co Alloy Nanocatalysts
000279852 260__ $$aWashington, DC$$bACS Publ.$$c2015
000279852 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1450337766_16049
000279852 3367_ $$2DataCite$$aOutput Types/Journal article
000279852 3367_ $$00$$2EndNote$$aJournal Article
000279852 3367_ $$2BibTeX$$aARTICLE
000279852 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279852 3367_ $$2DRIVER$$aarticle
000279852 520__ $$aMultimetallic shape-controlled nanoparticles offer great opportunities to tune the activity, selectivity, and stability of electrocatalytic surface reactions. However, in many cases, our synthetic control over particle size, composition, and shape is limited requiring trial and error. Deeper atomic-scale insight in the particle formation process would enable more rational syntheses. Here we exemplify this using a family of trimetallic PtNiCo nanooctahedra obtained via a low-temperature, surfactant-free solvothermal synthesis. We analyze the competition between Ni and Co precursors under coreduction “one-step” conditions when the Ni reduction rates prevailed. To tune the Co reduction rate and final content, we develop a “two-step” route and track the evolution of the composition and morphology of the particles at the atomic scale. To achieve this, scanning transmission electron microscopy and energy dispersive X-ray elemental mapping techniques are used. We provide evidence of a heterogeneous element distribution caused by element-specific anisotropic growth and create octahedral nanoparticles with tailored atomic composition like Pt1.5M, PtM, and PtM1.5 (M = Ni + Co). These trimetallic electrocatalysts have been tested toward the oxygen reduction reaction (ORR), showing a greatly enhanced mass activity related to commercial Pt/C and less activity loss than binary PtNi and PtCo after 4000 potential cycles.
000279852 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000279852 588__ $$aDataset connected to CrossRef
000279852 7001_ $$0P:(DE-HGF)0$$aDionigi, Fabio$$b1
000279852 7001_ $$0P:(DE-HGF)0$$aMerzdorf, Thomas$$b2
000279852 7001_ $$0P:(DE-Juel1)166087$$aGocyla, Martin$$b3
000279852 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b4
000279852 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b5$$ufzj
000279852 7001_ $$0P:(DE-HGF)0$$aGliech, Manuel$$b6
000279852 7001_ $$0P:(DE-HGF)0$$aSolla-Gullón, José$$b7
000279852 7001_ $$0P:(DE-HGF)0$$aHerrero, Enrique$$b8
000279852 7001_ $$0P:(DE-HGF)0$$aFeliu, Juan M.$$b9$$eCorresponding author
000279852 7001_ $$0P:(DE-HGF)0$$aStrasser, Peter$$b10$$eCorresponding author
000279852 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.5b03057$$gVol. 15, no. 11, p. 7473 - 7480$$n11$$p7473 - 7480$$tNano letters$$v15$$x1530-6992$$y2015
000279852 8564_ $$uhttps://juser.fz-juelich.de/record/279852/files/acs.nanolett.5b03057.pdf$$yRestricted
000279852 8564_ $$uhttps://juser.fz-juelich.de/record/279852/files/acs.nanolett.5b03057.gif?subformat=icon$$xicon$$yRestricted
000279852 8564_ $$uhttps://juser.fz-juelich.de/record/279852/files/acs.nanolett.5b03057.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000279852 8564_ $$uhttps://juser.fz-juelich.de/record/279852/files/acs.nanolett.5b03057.jpg?subformat=icon-180$$xicon-180$$yRestricted
000279852 8564_ $$uhttps://juser.fz-juelich.de/record/279852/files/acs.nanolett.5b03057.jpg?subformat=icon-640$$xicon-640$$yRestricted
000279852 8564_ $$uhttps://juser.fz-juelich.de/record/279852/files/acs.nanolett.5b03057.pdf?subformat=pdfa$$xpdfa$$yRestricted
000279852 909CO $$ooai:juser.fz-juelich.de:279852$$pVDB
000279852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166087$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000279852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000279852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000279852 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000279852 9141_ $$y2015
000279852 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279852 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000279852 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000279852 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2014
000279852 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279852 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000279852 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279852 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279852 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000279852 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2014
000279852 920__ $$lyes
000279852 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000279852 980__ $$ajournal
000279852 980__ $$aVDB
000279852 980__ $$aI:(DE-Juel1)PGI-5-20110106
000279852 980__ $$aUNRESTRICTED
000279852 981__ $$aI:(DE-Juel1)ER-C-1-20170209