000279869 001__ 279869
000279869 005__ 20210129221144.0
000279869 0247_ $$2doi$$a10.1016/j.jcrysgro.2015.03.043
000279869 0247_ $$2ISSN$$a0022-0248
000279869 0247_ $$2ISSN$$a1873-5002
000279869 0247_ $$2WOS$$aWOS:000356669200019
000279869 037__ $$aFZJ-2015-07745
000279869 041__ $$aEnglish
000279869 082__ $$a540
000279869 1001_ $$0P:(DE-Juel1)141766$$aRieger, Torsten$$b0$$eCorresponding author$$ufzj
000279869 245__ $$aInAs nanowires with Al$_x$Ga$_{1−x}$Sb shells for band alignment engineering
000279869 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2015
000279869 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453391369_2879
000279869 3367_ $$2DataCite$$aOutput Types/Journal article
000279869 3367_ $$00$$2EndNote$$aJournal Article
000279869 3367_ $$2BibTeX$$aARTICLE
000279869 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279869 3367_ $$2DRIVER$$aarticle
000279869 520__ $$aInAs nanowires surrounded by AlxGa1−xSb shells exhibit a change in the band alignment from a broken gap for pure GaSb shells to a staggered type II alignment for AlSb. These different band alignments make InAs/AlxGa1−xSb core–shell nanowires ideal candidates for several applications such as TFETs and passivated InAs nanowires. With increasing the Al content in the shell, the axial growth is simultaneously enhanced changing the morphological characteristics of the top region. Nonetheless, for Al contents ranging from 0 to 100 % conformal overgrowth of the InAs nanowires was observed. AlGaSb shells were found to have a uniform composition along the nanowire axis. High Al content shells require an additional passivation with GaSb to prevent complete oxidation of the AlSb. Irrespective of the lattice mismatch being 1.2% between InAs and AlSb, the shell growth was found to be coherent.
000279869 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000279869 588__ $$aDataset connected to CrossRef
000279869 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b1$$ufzj
000279869 7001_ $$0P:(DE-Juel1)128603$$aLepsa, Mihail Ion$$b2$$ufzj
000279869 773__ $$0PERI:(DE-600)1466514-1$$a10.1016/j.jcrysgro.2015.03.043$$gVol. 425, p. 80 - 84$$p80 - 84$$tJournal of crystal growth$$v425$$x0022-0248$$y2015
000279869 8564_ $$uhttps://juser.fz-juelich.de/record/279869/files/1-s2.0-S0022024815002675-main.pdf$$yRestricted
000279869 8564_ $$uhttps://juser.fz-juelich.de/record/279869/files/1-s2.0-S0022024815002675-main.gif?subformat=icon$$xicon$$yRestricted
000279869 8564_ $$uhttps://juser.fz-juelich.de/record/279869/files/1-s2.0-S0022024815002675-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000279869 8564_ $$uhttps://juser.fz-juelich.de/record/279869/files/1-s2.0-S0022024815002675-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000279869 8564_ $$uhttps://juser.fz-juelich.de/record/279869/files/1-s2.0-S0022024815002675-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000279869 8564_ $$uhttps://juser.fz-juelich.de/record/279869/files/1-s2.0-S0022024815002675-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000279869 909CO $$ooai:juser.fz-juelich.de:279869$$pVDB
000279869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141766$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000279869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000279869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000279869 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000279869 9141_ $$y2015
000279869 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279869 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CRYST GROWTH : 2014
000279869 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279869 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000279869 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279869 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000279869 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000279869 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000279869 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000279869 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000279869 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000279869 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279869 920__ $$lyes
000279869 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000279869 980__ $$ajournal
000279869 980__ $$aVDB
000279869 980__ $$aUNRESTRICTED
000279869 980__ $$aI:(DE-Juel1)PGI-9-20110106