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In this work, we demonstrate that path-integral schemes, derived in the context of many-body quan-
tum systems, benefit the simulation of Gaussian chains representing polymers. Specifically, we show
how to decrease discretization corrections with little extra computation from the usual O(1/P2) to
O(1/P4), where P is the number of beads representing the chains. As a consequence, high-order inte-
grators necessitate much smaller P than those commonly used. Particular emphasis is placed on the
questions of how to maintain this rate of convergence for open polymers and for polymers confined
by a hard wall as well as how to ensure efficient sampling. The advantages of the high-order sampling
schemes are illustrated by studying the surface tension of a polymer melt and the interface tension in
a binary homopolymers blend. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4919311]

I. INTRODUCTION

The mathematical isomorphism between the partition
function of a Gaussian chain representing a polymer and
the density matrix of a quantum-mechanical point particle
has been known at least since Feynman formulated quantum
mechanics in terms of path integrals.1–4 To cast the partition
function of Gaussian chains or quantum-mechanical point
particles as path integrals, bead-spring chains comprised of
P beads are embedded into an external potential and config-
urations occur with a probability following the usual laws of
statistical physics. Differences between polymer and quantum
calculations usually arise in the nature of the external potential.
In the context of quantum mechanics, beads of different chains
only interact if they carry the same index, at least as long as all
degrees of freedom in the system are considered explicitly.5,6

In contrast, beads representing parts of a homopolymer are
commonly assumed to interact with all others irrespectively
of their positions along the chain. Within self-consistent field
theory, these interactions are replaced by an external potential
that represents the average mean interaction of a bead with its
neighborhood.7,8 In single-chain-in-mean-field (SCMF) simu-
lations, the interactions among beads are temporarily replaced
by an external potential that approximates the interaction of a
bead with its instantaneous surrounding.9,10

Despite the just-mentioned differences between quantum
and polymer chains, their simulations pursue similar goals
and face related difficulties.11–13 To obtain converged results
or results that mimic the universal behavior of long polymer
chains, the discretization of the chain contour, P, should al-
ways be as large as possible. However, increasing P implies
more computing time per chain. Even worse, the stiffness of
springs connecting adjacent beads increases with P, which, in
turn, gives rise to a time-scale separation between stiff bonded
and weak non-bonded interactions14 and affects the sampling
efficiency of many algorithms. The ensuing impediments can

be quite dramatic when a complex task is handled with naive,
yet, frequently used algorithms. As an example, we discuss
by how much the necessary computing time increases if one
wants to reduce a given systematic “finite-P” error by a factor
of two when simulating bead-spring chains in the presence of
a hard wall. We assume that the goal is to keep the stochastic
error constant and that no tricks of the trade are used —
single-bead moves in either Monte Carlo (MC) or molecular
dynamics (MD). For hard walls, results converge only with
1/
√

P15 so that P needs to increase by a factor of four to halve
the error. Using only single-bead moves, the slowest mode in
the system has a correlation time proportional to P2 according
to the Rouse model,16 which means we need to run 16-times
more global sweeps, even when dynamics are underdamped.17

In total, this means 64 times the computing effort, i.e., the
numerical effort scales proportional to the inverse sixth power
of the acceptable error.

In both the quantum and the polymer communities, impor-
tant advances have been made to improve convergence of
path integrals. For example, the hard-wall (HW) problem has
been solved in a similar fashion for quantum particles as for
Gaussian chains by finding solutions for the free chain in the
presence of one or two walls.15,18,19 However, some advances
have been made for path integrals in the quantum community
that do not yet have appeared in the context of polymers. Most
notably, easy-to-code decompositions of the high-temperature
density matrix have been derived that lead to discretization
errors, which disappear as 1/P4 in the case of cyclic chains
(CC).20,21

In field-theoretic approaches, e.g., numerical self-consis-
tent field theory, the equilibrium properties of multi-compo-
nent Gaussian polymer systems can be obtained by solving
a modified diffusion equation that describes the equilibrium
of a single Gaussian chain in an external field. Fully spec-
tral techniques do not involve any discretization error of the
Gaussian chain contour.22 Fourth-order accuracy in solving
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this partial differential equation can be achieved by combin-
ing a second-order pseudospectral algorithm with Richardson
extrapolation23 or by treating the Laplacian operator implic-
itly with a fourth-order backward differentiation formula and
the source term explicitly via a fourth-order Adams-Bashford
scheme.24 The numerical performance of these algorithms has
been carefully examined in the literature.25,26 For the equilib-
rium properties of linear Gaussian chains, these techniques
are often more efficient than the direct numerical evaluation
of the path integral. However, they cannot be carried over in
a straightforward fashion to a particle-based description that
is employed in partial enumeration techniques27,28 and SCMF
simulations.10 The latter particle-based scheme is particularly
advantageous for studying the kinetics of structure formation
because it accounts for the correlation between single-chain
dynamics and collective kinetics of the density fields, whereas
in a field-theoretic formulation, this correlation is described by
an Onsager coefficient that is difficult to evaluate in a spatially
inhomogeneous system.

Another useful method, namely, a sampling algorithm
called “staging” was proposed 30 years ago to be used in path-
integral Monte Carlo simulations.29 It allows one to resample
a given fraction of a bead-spring chain in an external potential
at a roughly constant acceptance ratio, no matter how large P.
Slowing down due to Rouse dynamics is thereby completely
eliminated. If both concepts could be combined, one would
only need 21/4 rather than 26 times the computing time, when
decreasing the error of our chain in front of a hard wall by a
factor of two. However, convergence can also be dramatically
improved when no hard walls are present.

In this work, we study to what extent the advances on the
high-order density-matrix decomposition benefit the simula-
tion of linear Gaussian chains, including polymers adjacent
to a hard wall and narrow interfaces in strongly segregated
polymer blends. The good convergence for closed chains is not
automatically maintained for open chains (OC), because, as we
demonstrate in this paper, particular caution has to be taken for
the acquisition of averages over an open chain. Moreover, we
describe how to adopt the staging algorithm in the presence of a
hard wall. The advantage of a hard-wall adjusted staging move
is that no more trial moves can be rejected. The latter frequently
happens when the effect of the hard wall on the finite-P chain is
reflected by the presence of an effective (P-dependent) poten-
tial. As a consequence of the hard-wall staging algorithm, large
fractions of a chain can be sampled in a single step with good
acceptance ratio.

Our manuscript is arranged as follows: In Sec. II, we
describe high-order density-matrix decompositions and the
staging algorithm including our extensions of these schemes.
Results are presented in Sec. III and conclusions are drawn in
Sec. IV.

II. THEORY AND METHODS

A. Approximations to path integrals

We consider the one-dimensional path-integral

I(τ, x0, x1) ≡ C
 x(τ)=x1

x(0)=x0

D[x(t)] exp{−H [x(t)]}, (1)

with

H [x(t)] = 1
τ

 τ

0
dt



1
2


τ

λ

∂x(t)
∂t

2

+ v{x(t)}

. (2)

Here, x(t) is a path having x(t = 0) = x0 as starting point and
x(t = τ) = x1 as end point. t is the variable on which the paths
depend. It runs from 0 to τ, while λ is a parameter controlling
to what extent paths want to localize. The prefactor C is a
normalization constant, which can depend on τ and λ but not
on the realization of the paths. It is irrelevant for the purpose
of this study.

We abstain from giving a detailed account of path-
integrals in the context of quantum mechanics or polymer
physics and instead refer to the pertinent literature.10,30 It
shall suffice to state the interpretation of various terms. 0 ≤ t
≤ τ = ~/kBT is called imaginary time in quantum physics,
where ~ is the reduced Planck constant and kBT is the thermal
energy, while in polymer physics, t tends to be chosen as
a unitless variable indexing the path of a linear polymer
with a dimensionless number 0 ≤ t ≤ τ = 1. The parameter
λ corresponds to ~/

√
mkBT in quantum physics, which is

the thermal de Broglie wavelength divided by
√

2π, m being
the mass of the particle, or λ = REE/

√
D in polymer physics,

where REE is the root-mean-square end-to-end radius of a free
polymer embedded in D-dimensional space. Moreover, v(x)
is the external potential energy per length measured in units
of the thermal energy kBT . In the following, we measure all
energies in units of kBT . Finally, I(τ, x0, x1) corresponds to
either the real-space representation of the density matrix of a
quantum point particle or the probability density of a polymer
to have its head and tail monomer be located, respectively, at
x0 and x1.

In the following, we call the integrand on the r.h.s of
Eq. (1) the propagator in imaginary time or simply the prop-
agator. Numerical evaluations of path integrals require one to
factorize the propagator into short-time propagators and to find
approximations for them. These approximations then translate
into discretization recipes for the r.h.s. of Eq. (2). Factorization
can be achieved, for example, by (recursively) making use of
the identity,

I(τ, x0, x1) ∝
 ∞

−∞
dx ′ I

(
τ

2
, x0, x ′

)
I
(
τ

2
, x ′, x1

)
, (3)

or by factorizing the original propagator into P terms rather
than into two terms as done implicitly in Eq. (3). As a brief side
remark, we note that the proper choice of the normalization
constant C allows one to replace the proportionality sign in
Eq. (3) or related factorizations with an equality sign.

In Dirac notation, one can write

I (∆τ, xt, xt+∆τ) = ⟨xt |e−Ĥ /P |xt+∆τ⟩, (4)

with an effective Hamiltonian Ĥ ,

Ĥ =
λ2∂2

x

2
+ v̂ , (5)

where ∂x denotes a partial derivative with respect to x and v̂
the potential energy operator. Moreover, ∆τ = τ/P.

So far, no approximations have been made. However, to
evaluate the r.h.s. of Eq. (4), which one may want to call the
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short-time propagator, one can write

e−Ĥ/P = e−v̂/2Pe−λ
2∂2

x/2Pe−v̂/2P +O(1/P3), (6)

where the O(1/P3) error is valid for potentials whose second-
order derivative is not divergent.31,32 Inserting this approxima-
tion into Eq. (4) and evaluating it yields

I (∆τ, xt, xt+∆τ) ≈ Ce−{v(xt)+v(xt+∆τ)}/2P

× e−P(xt−xt+∆τ)
2/2λ2, (7)

which can be used to identify a finite-difference approximation
of summands in Eq. (2) as

H [x(t)] = H(x0, . . . , xP) +O(1/P2)

≈ P
2λ2

P
n=1

(xn − xn−1)2 + 1
P

P
n=0

wnv(xn), (8)

where we now write the end point of the path as xP. The
weights for the energies are wn = 1 except w0 = wP = 1/2,
i.e., the potential energy is integrated along the path according
to the trapezoidal rule. In the following, the term “primitive
propagator (PP)” relates to a path integral whose integrand is
discretized in the just-described way, i.e., according to Eq. (8).

This equation corresponds to a discretization of the Ed-
wards Hamiltonian of a Gaussian chain, i.e., a chain consists
of P + 1 beads that are connected via P harmonic springs. Full
beads are placed between two adjacent springs, whereas the
terminal beads are only “half” beads. In the context of polymer
physics, the standard discretization of the Edwards Hamilto-
nian (DEH) is slightly different, i.e., one gives each bead an
identical weight, which would translate into wn = P/(P + 1).

More accurate decompositions of the density operator
than that in Eq. (6) have been proposed in the past few de-
cades,32,33 most notably by Takahashi and Imada.34 A disad-
vantage of their and related approaches is that taking mean
values of observables turns out more elaborate than when
using the primitive propagator. Recently, Chin20 proposed a
new decomposition of the short-time propagator, which, like
Takahashi-Imada propagator,34 has leading errors that scale
as O(1/P4) but does not necessitate elaborate redefinitions of
observables, as pointed out by Jang et al.21 Defining

t̂ = λ2∂2
x/2, (9)

the decomposition reads

e−2Ĥ/P = e−v̂/3Pe−t̂/Pe−4v̂g/3Pe−t̂/Pe−v̂/3P, (10)

where the operator v̂g is the operator with the eigenvalue

vg(x) = v(x) + 1
12P2 (∂xv)2 (11)

for a given |x⟩. The pertinent expression for the discretized
version of H [x(t)] can be obtained in a similar fashion as for
the primitive propagator. They are summarized in Sec. II B.

For ring polymers or cyclic chains, x0 = xP, observables
can be defined only on “even beads” (given that we start
enumerating monomers with n = 0) according to

⟨O⟩CC =
2
P

P−2
n=0,2, ..

⟨O(xn)⟩HOA +O(1/P4), (12)

FIG. 1. Mean external potential energy of beads as a function of their index
n for λ=τ = 1 and v(x)= k x2/2, with k = 64. The full line shows converged
results for P ≫ 1, while symbols show data for P = 16. Blue diamonds
represent averages obtained with a HOA to the propagator, while red crosses
refer to those obtained with the PP.

where the index CC stands for cyclic chains and HOA for an
estimate based on the high-order approximation propagator
of Eq. (10). As we discuss in the following, Eq. (12) is not
valid for open chains.

To substantiate this claim, it is easiest to consider an
example. Fig. 1 shows how the mean external potential en-
ergy of individual beads depends on their index n, or to be
more precise, on the ratio n/P. In the given example, we
consider a chain with λ = τ = 1 and an external harmonic
potential v(x) = k x2/2, with k = 64. One can see that the even-
numbered beads of the HOA calculation with contour dis-
cretization P = 16 correspond quite closely to the converged
results. In fact, further analysis confirms that errors on even-
number beads are O(1/P4). In contrast, odd-numbered beads as
well as the calculations using the primitive-propagator with the
same chain discretization, P = 16, deviate from the converged
results in a clearly visible fashion.

To obtain accurate estimates for the mean external poten-
tial ⟨v⟩, whose error only increases proportional to 1/P4,
one needs to sum over the ⟨v{x(t = n/P)}⟩ curve with an algo-
rithm that converges sufficiently fast. Since the trapezoidal rule
leads to O(1/P2) errors, we propose to resort to (a composite)
Simpson’s rule, which is sufficiently accurate to allow for an
O(1/P4) convergence. This leads to expressions that differ
from Eq. (12), which are also summarized in Sec. II B.

Finally, we note that the review of high-order approx-
imations and the proposition to use Simpson’s rule for the
measurement of observables defined on open chains only relate
to non-grafted polymers. Once chains are tethered with one
head-group to a wall, one may have to simulate them differently
than non-grafted chains in order to maintain O(1/P4) conver-
gence. This issue will be addressed in a separate study.

B. Implementation of high-order approximations

While the derivation of high-order approximations to
path integrals may be seen as somewhat cumbersome, its
implementation can be achieved in a rather straightforward
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TABLE I. Value of weighting coefficients as a function of the bead index n.
The modulo function is denoted as n%4. The enumeration starts at n = 0 and
ends at P, which must be an integer multiple of 4. wn gives the weight of the
energy in the Boltzmann factor. f c

n states if the square-gradient corrections
need to be added to v(x) to yield vg(x). Finally, wm

n states the weight of an
observable in a measurement.

n%4 wn f c
n wm

n

0 2/3 0 4/3
1 4/3 1 0
2 2/3 0 8/3
3 4/3 1 0
Except
n = 0 1/3 0 2/3
n = P 1/3 0 2/3

fashion. In this section, we explain what needs to be done if a
conventional code, e.g., one based on the primitive propagator,
is present.

First, no differences appear as to the handling of the
springs connecting two beads. Second, for each bead, we need
to evaluate the potential v(xn) as before. Third, we need to
evaluate the square-gradient correction to v(xn) only on beads
with an odd index given that we start enumerating beads with
n = 0. For self-consistent theory calculation on polymers, this
should not be an expensive procedure, because derivatives
can be evaluated numerically at moderate expense. Fourth,
measurements are only taken on even beads and the weights
of an observable evaluated at xn follow from the composite
Simpson’s rule. In all cases, except for the head and the tail
monomer, every bead with an index, that is an integer multiple
of four, is both a starting point as well as an end point of
Simpson’s rule. Thus, the value of P needs to be an integer
multiple of four, as Simpson’s rule necessitates two starting
points, a midpoint, and an end point. We summarize the results
in Table I.

The resulting expression for observables defined as inte-
grals over OC is

⟨O⟩OC =
1
P

P
n=0

wm
n ⟨O(xn)⟩HOA +O(1/P4), (13)

where the weights are taken from Table I. The rule to obtain
averages for observables is also valid for the external potential,
although it differs from the expression entering the Boltzmann
factor. The latter is

v[x(t)] = 1
P

P
n=0

wn

�
v(xn) + f c

n∆vg(xn)	 , (14)

which replaces the second summand of Eq. (8) in calculations
based on the high-order approximation to the propagator.
Here, ∆vg(x) refers to the square-gradient correction vg(x)
− v(x) = {∂v(x)/∂x}2/12P2.

C. Free-particle (FP) staging

As the continuum approximation of the path is increas-
ingly better realized for larger P, numerical approaches solely
based on single-bead dynamics quickly slow down. The reason

is that the correlation time, as measured in MD time steps or in
number of MC sweeps, increases with P2 (Rouse dynamics).
A similar problem is known from numerical evaluations of
path integrals, for which an efficient sampling algorithm, called
staging, was proposed three decades ago.29 It overcomes the
problem that springs connecting two adjacent beads become
stiffer thereby making single-bead MC trial moves more inef-
ficient with an increasing number of beads representing the
path.

The idea of the staging technique is to make a trial move of
a chain segment such that a single trial move has the (exact) sto-
chastic properties of a segment that is not coupled to external
potentials. The relative probability of the trial path xtrial(t) and
the existing path x(t) then becomes

Prr = exp
(
−
 τ2

τ1

dt {v[xtrial(t)] − v[x(t)]}
)
, (15)

which in turn can be used as a transition probability in the
Metropolis algorithm.

The sampling of free segments proceeds as follows: as-
sume that the fixed end points t1 and t3 both lie within the
Gaussian chain, i.e., within the interval [0, τ], see Eq. (1).
The effective interaction of the midpoint bead at t2 = (t1
+ t3)/2 is a harmonic coupling to the beads at t1 and t3, each
time with an effective inverse spring constant of k−1

12 = k−1
23

= (t3 − t1)λ/2. Since the two springs act in parallel, their action
adds to a net inverse spring constant of

k−1 = (t3 − t1)λ/4. (16)

Thus, the center bead will fluctuate around the center of mass
of the two fixed outer beads with a normal distribution whose
second moment is k−1 or kBT/k if kBT is not chosen as unit for
the thermal energy. One can realize the correct distribution by
assigning the following value to xtrial(t2):

xtrial(t2) = x(t1) + x(t3)
2

+
uG√

k
, (17)

where uG is a Gaussian random variable of zero mean and
a standard variance of one. The same procedure also holds
for arbitrary physical dimension D. Using variables of the
Gaussian chain description, trial coordinates are assigned
through

xαtrial(t2) = xα(t1) + xα(t3)
2

+


t3 − t1

Dτ

uα
G

2REE
, (18)

where for each Cartesian component α, an independent
Gaussian random variable uα

G must be drawn.
We now have a new fixed point at t = t2 and two new

midpoints located at, respectively, (t1 + t2)/2 and (t2 + t3)/2.
These new midpoints can be assigned trial coordinates with
the just-described scheme, in which, however, trial coordinates
need to be used as fixed points on the r.h.s. of Eq. (17). Re-
maining points in the interval t1 < t < t3 can be assigned by
iteration.

If a moved chain segment includes an open end of a
polymer, the trial move of the end bead can be done similarly as
before. The only difference is that the end bead only couples
to one starting bead with one effective spring. Thus, for end
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polymers, we need to modify Eq. (18) to

xαtrial(τ) = xα(t1) +


τ − t1

Dτ

uα
G

REE
. (19)

In practice, the just-given recipe can be implemented in
a straightforward fashion, when choosing the indices of the
two outer beads, n1,3 = t1,3P, such that they differ by an integer
power of two. Note that this does not mean that P itself has to be
an integer power of two. It is certainly possible to make staging
moves such that the end points are not separated by an integer
power of two through an appropriate generalization of the
algorithm. However, its description is slightly more involved
and its action does not speed up simulations to any significant
degree.

The implementation of the staging technique—with or
without hard-wall corrections—for the current problem is done
as follows: we first pick a monomer in the chain with n1
= int(uP), where 0 < u ≤ 1 is a uniform random number.
(Monomers are numerated from 0 to P.) We then pick n3
by adding or alternatively subtracting 2smax from n1, where
smax is a positive integer. If n3 lies outside the chain, we
shift the chosen segment such that it includes the ends, for
example, for n3 > P, we move the segment such that the new
n3 = P corresponds to an end-bead, which then gets resampled
as well. Otherwise, we proceed as described above. In one
sweep, P/2smax such moves are done, which means that we
evaluate, on average, the coupling to an external potential
once for each monomer. The integer smax is usually chosen
as large as possible so that an acceptance rate of greater 10%
is still achieved. Depending on the nature of the problem,
e.g., when the curvature of the external or self-consistent
potential varies quickly, it might be beneficial to run a “V”-
cycle, in which smax is varied between one and an appropriately
chosen maximum.39

D. Hard-wall adopted staging

Path-integral simulations can be made not only more effi-
cient but also more quickly converging by introducing appro-
priate trial moves. For example, the propagator for a particle in
a box can be corrected systematically through approximations
in terms of winding numbers, see, e.g., Eqs. (11) and (12)
in Ref. 15. Similarly, one can correct the path integrals for
Gaussian chains in front of a hard wall by solving the diffusion
equation in the presence of a reflecting wall.18 The latter can be
obtained within a few lines by proceeding as in Ref. 15, i.e., the
(short-time) free-particle propagator follows from

I(∆τ, x1, x2) ≡ ⟨x1| exp
�
−t̂/P

� |x2⟩
=

 ∞

−∞
dkΨk(x1)Ψk(x2) exp(−ek∆τ/P),

(20)

where the kinetic energy operator (expressed in units of kBT)
was defined in Eq. (9). Here, the Ψk(x) are eigenfunctions of
a free particle and ek = k2/2 being their eigenenergies in the
appropriate unit system.

To turn the free-particle propagator into a hard-wall prop-
agator, we may only integrate over those eigenfunctions that

satisfy the boundary condition on the walls, i.e., sin(k x)
rather than exp(ik x). Inserting the sin(k x) into Eq. (20) and
integrating over non-negative values of k yields

ρ(x1, x2,σ) ∝ sinh
( x1 x2

σ2

)
exp



−

x2
1 + x2

2

2σ2



, (21)

with

σ =
λ
√

P
. (22)

The proportionality in Eq. (21) can also be cast in terms of the
product of a hard-wall correction factor and the free-particle
propagator,

ρ(x1, x2,σ) ∝
(
1 − e−2x1x2/σ

2
)

e−(x1−x2)2/2σ2
. (23)

In the context of a particle diffusing in front of a reflec-
tive wall located at x = 0, Eq. (21) gives the (unnormalized)
probability (density) of a random walk to end up at x2 given
that it started at x1. We can therefore use it to sample the
head or tail-monomer of a Gaussian chain, i.e., we use it
to replace Eq. (19) whenever x1 does not distinctly exceed
σ. Details of how this can be achieved are given further
below.

In addition to the end point propagator, we also need the
one for “midpoint beads.” The probability of a midpoint bead to
end up at x2 = x(t2) is proportional to ρ(x1, x2)ρ(x2, x3) given
that x1 = x(t1) and x3 = x(t3) are fixed and t2 − t1
= t3 − t2, i.e.,

ρm(x1, x2, x3,σ) ∝ sinh
( x1 x2

σ2

)
sinh

( x2 x3

σ2

)
× exp



−

x2
1 + 2x2

2 + x2
3

2σ2



. (24)

The probability distribution ρm deviates from a simple
Gaussian if neither x1 nor x3 is much greater than σ. We
note in passing that when comparing Eq. (24) with equations
from Sec. II C, one needs to keep in mind that σ relates to
t2 − t1, whereas k related to t3 − t1. This explains why there is
a prefactor of two in front of x2

2 in the exponential on the r.h.s.
of Eq. (24) rather than a prefactor of four.

Once the relative probabilities for midpoint beads and
end point beads are known, they can be used to generate trial
moves that are distributed exactly according to the distribution
of a polymer in front of a hard wall. Unfortunately, only a
selected number of distributions can be drawn directly. One
possibility to overcome this problem is to incorporate the exact
probabilities in terms of an effective, external potential as done,
for example, in Refs. 18 and 19. In this case, the effect of the
hard walls on the propagator is discarded in the generation of
the trial path and instead moved to the Metropolis step. The
disadvantage of this solution is that it risks to decrease the
fraction of the chain that can be resampled with a reasonable
acceptance rate. For short chains, this may not have to be a large
drawback. In the context of quantum mechanics, where values
of P beyond 1000 are not exceptional, this would constitute a
serious drawback. However, even for chains as short as P = 16,
significant gains can be made if one can resample the full
chain, i.e., 16 monomers, instead of making single or double
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monomer moves. This is why we choose to implement hard-
wall adopted staging moves.

We first discuss how to draw head or tail monomers. As
already mentioned, once x1 ≫ σ, one can simply draw from
a Gaussian distribution. In our implementation, we considered
x1 ≥ 6σ to satisfy that criterion for all practical purposes. At
the other end, once x1 ≪ σ, one can approximate the expres-
sion sinh(x1x2/σ

2) linearly without affecting the probability
distribution in a noticeable way. This time, we see x1 . σ/10
as being sufficient for x1 to be called very small. One can
then draw x2 via the heat-bath algorithm, i.e., by solving the
equation,

u =
 x2

0
dx ′2 Pr(x ′2), (25)

where Pr(x ′2) is the normalized probability distribution and u is
a uniform random variable on ]0,1[. In the limit x1 ≪ σ, where
Pr(x2) ≈ (x2/σ

2) exp(−x2
2/2σ

2), one then obtains

x2 = σ
√
−2 ln u. (26)

For x1/σ = O(1), i.e., outside the two regimes just-
discussed, one must resort to alternative strategies. One possi-
bility would be to solve the heat bath equation numerically,
e.g., by determining the probability distribution and its integral
numerically. However, we found it more effective to run a small
MC simulation with which to generate the trial coordinate.
The idea is that the true distribution function is approached
extremely fast if one can draw (at low CPU-time cost) from
a distribution that closely resembles the exact one. We moved
the description of this procedure into the Appendix, because it
might distract from the central content of this section and more
importantly because the underlying idea may be interesting in
its own right.

To generate trial coordinates for midpoint beads, we pro-
ceed in a similar fashion as for end points, i.e., we draw trial
coordinates from the distribution that is exact in the absence of
an external potential. This time, we first identify the location
xc of the maximum of the true distribution function, Eq. (24).
If xc > 6σ, we can safely sample from a Gaussian, while we
resort to drawing xc from a short MC simulation otherwise.
Technical details are presented in the Appendix, where we
also demonstrate that exact distributions are reproduced to high
accuracy after only one or two MC time steps.

III. RESULTS

A. Convergence tests

1. Open chain in a harmonic potential

To test the convergence of different integration schemes
for typical situations, we consider the generic example of an
open chain in a harmonic potential. For this purpose, we keep
the example from Sec. II A, in which the curvature of the
external potential is 64 times the end-to-end stiffness of the
(one-dimensional) polymer. Fig. 2 reveals that the simula-
tion result are consistent with our expectations about finite-P
discretization errors: the observed deviations appear to scale
with O(1/P4) for our HOA-based algorithm, while PP-based

FIG. 2. Convergence of the mean external energy ⟨v⟩ of the open chain
introduced in Fig. 1 as a function of 1/P2, where P is the number of
springs of the chain. Blue diamonds and red crosses refer to simulations
that are based on, respectively, a HOA or the PP algorithm. Lines reflect fits
according to v0+c1/P

4 (HOA) and v0+c2/P
2 (PP), where v0, c1, and c2 are

fit coefficients. Symbol size corresponds to error bars.

approaches only achieve O(1/P2). In addition, we find that
HOA-based simulations reduce to O(1/P2) if measurements of
the energy are performed with the trapezoidal rule rather than
with a high-order integration scheme, i.e., when assigning the
measuring weight of zero on odd beads, one on start and end
beads and two on all other even beads.

The next convergence test is motivated by applications,
in which a hard wall is present. Hard walls induce a polymer
depletion close to their surfaces, which in turn leads to a
strong, effective attraction towards the wall in a melt. The
interaction can usually be approximated by a function v(x)
= v0{1 − tanh2(x/ζ)}, where v0 and ζ represent energy and
length scales, respectively. In practical applications, the curva-
ture of the attractive interaction, v0/ζ

2, is many times the end-
to-end stiffness. We mimic this situation by running simula-
tions of a harmonic trap, whose minimum is located right on
the surface of the wall. In the new set of calculations, we set the
curvature of the harmonic potential to 512 times the end-to-end
stiffness.

Fig. 3 reveals that the error analysis is again consistent
with the simulations, i.e., the slowly vanishing O(1/√P) hard-
wall corrections are clearly revealed, as long as no hard-wall
corrections are included. Corrections disappear with 1/P2 once
the appropriately adopted staging moves are employed. The
situation is a little less clear cut when adding the high-order
corrections to the hard-wall propagator. The problem is that
the asymptotic convergence does not set in earlier than for
the less accurate integration scheme. This behavior is generic
for both high-order approximations and integration schemes
diagonalizing part of the Hamiltonian prior to the simulation.35

Part of the reason is that O(1/P6) corrections need to be small
in order for the O(1/P4) correction to become visible. As a
consequence, the leading-order corrections may already be
very small and thus within numerical noise, when asymptotic
convergence sets in. We note in passing that the combination of
hard-wall and HOA propagators only yields a 1/P4 scaling if
the gradient of the potential disappears at the surface of the wall.
Since this should be the case for most practical applications,
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FIG. 3. Convergence of the mean external energy ⟨v⟩ of an open chain in
a harmonic trap right next to a wall. Blue diamonds and red crosses refer to
simulations that are based on, respectively, a HOA or the PP algorithm. These
two sets of simulations are produced with HW adopted staging moves. Green
plus signs represent FP simulations produced with the PP. Lines reflect fits
according to v0+c1/P

4 (HW-HOA), v0+c2/P
2 (HW-PP), and v0+c3/

√
P

(FP-PP), where v0, c1, c2, and c3 are fit coefficients. Fits are conducted for
values of P, above which the asymptotic behavior is observed. The green
arrow indicates the asymptotic value of the FP-PP fit.

we do not invest efforts into adopting the HOA scheme for hard-
wall propagators beyond their simple combination.

It remains to be discussed if one can ascertain the required
value for P prior to a Gaussian chain calculation. This
question is answered most easily in the framework of the
quantum harmonic oscillator. In that case, one is close to
being converged when kBT P & ~ω0, where ω0 is the eigenfre-
quency of the oscillator, which is proportional to

√
k, where

k is the curvature of the harmonic potential. This is because
for thermal energies exceeding ~ω0, the quantum harmonic
oscillator resembles its classical counter part quite closely.
For the Gaussian chain calculation, one sets kBT = 1 so that
choosing P proportional to

√
k should bring one close to

convergence. Thus, it should not be necessary for the springs
connecting two adjacent beads to be as stiff as the curva-
ture of the potential. This conclusion is supported from the
convergence tests presented in this section. Data shown in
Fig. 2 correspond to k = 64 and deviations from converged
results are already relatively small for P = 16, that is, for
P = 2

√
k—assuming our unit system of ~ = m = kBT = 1

for quantum or R2
EE/D = kBT = 1 for polymer systems. For

the hard-wall adopted primitive propagator, we observe that
deviations from the exact result are again &1% for P = 2

√
k

in case of the k = 512 system presented in Fig. 3. If adding the
high-order corrections, results are very close to the exact values
at much smaller values of P. This, however, is likely a fortu-
itous cancellation of errors, as high-order corrections appear to
have the opposite signs of the leading term. To conclude, once a
reasonable estimate for the maximum curvature of the external
or self-consistent potential is known, it is straightforward to
choose P.

2. Surface tension of a polymer melt

Using self-consistent field calculation in conjunction with
a partial enumeration scheme to compute the single-chain

partition function, we study the surface properties of a dense
polymer melt in contact with a solid wall in the grandcanonical
ensemble.19 The mean-field interaction in units of kBT that a
bead at a distance x away from the wall experiences is given
by

v(x)
P
=

κN
P

[φ(x) − 1] , (27)

where the dimensionless quantity φ(x) is the local bead number
density normalized by its value in the bulk. κN is proportional
to the inverse isothermal compressibility and quantifies the
repulsion of the chain molecules. In the numerical calculations,
we use κN = 50, which is typical for SCMF simulations.10

To compute the single-chain partition function, we
generate a large number Nconf = 107 or 5 · 107 of one-dimen-
sional random walks with independent Gaussian steps of
mean-squared length ⟨b2

x⟩ = R2
EE/(3P). The first bead of each

chain molecule is randomly placed in the interval 0 ≤ x
≤ Lx = 2REE. If any bead lays outside this interval, the a priori
statistical weight of this chain configuration c will be zero,
wc,0 = 0; otherwise, wc,0 = 1. The spatial coordinate 0 ≤ x
≤ Lx/2 is discretized into Nx = 128 uniform intervals (slabs),
and reflecting boundary conditions are imposed at x = Lx/2.

In the HW-HOA scheme, we initially compute for each
chain conformation, c, the following fixed single-chain slab
occupancies according to Table I:

ρc,0(ix) = 1
P


n=0,2, ...

wnΘix(xn, ix), (28)

ρc,1(ix) = 1
P


n=1,3, ...

wnΘix(xn, ix), (29)

ρc,m(ix) = 1
P


n

wm
n Θix(xn, ix), (30)

where Θix, ix = 0, . . . ,Nx − 1, is the characteristic function of
slab ix. Moreover, we compute for each chain its HW-weight,18

see also Eq. (23),

ηc = wc,0

P
n=1

(
1 − exp


−

2xc,nxc,n−1

⟨b2
x⟩

)
, (31)

where xc,n denotes the x-coordinate of the nth bead on chain
configuration c. Using these fixed single-chain slab occu-
pancies and HW-weights, we calculate the statistical weight,
wc, of chain conformation c, the normalized density profile,
φ(ix), and the single-chain partition function, Q, according to

wc = ηce−

ix


v(ix)ρc,0(ix)+vg (ix)ρc,1(ix)


,

φ(ix) = zNx

Nconf


c

wcρc,m(ix), (32)

Q = 1
Nconf


c

wc =
1

zNx


ix

φ(ix),

where z = 1 denotes the fugacity, which is adjusted such that
φ = 1 in the bulk. The gradient-corrected interaction is given
by (cf. Eq. (11)),

vg(ix) = v(ix) + 1
12P2

R2
EEN2

x

3L2
x

[v(ix + 1) − v(ix − 1)]2. (33)
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Equations (27) and (32) are solved self-consistently using
a gradient-free Newton technique.

The surface tension γ is computed according to

ω = − 1
Nx


ix


φ(ix) + κN

2
�
φ2 − 1

�
, (34)

γR2
EE

kBT

N̄
=

Lx

2REE
[ω − ωbulk] , (35)

where ω denotes the grandcanonical free energy per molecule
in units of kBT in the film and ωbulk = −1 is the corresponding
bulk value. N̄ = (nR3

EE/V )2, with n and V being the number of
chains and the volume, respectively, is the invariant degree of
polymerization.

We have compared this HW-HOA scheme to the HW-
DEH scheme, where we use the HW-weight according to
Eq. (31),18,19 but all monomers contribute uniformly to the
slab occupancies and densities, wn = wm

n = P/(P + 1) and no
gradient correction is applied. Finally, we also compute the
density profile and the surface tension of the FP-DEH scheme
using the free-particle propagator with wn = wm

n = P/(P + 1),
ηc = wc,0, and vg = v , which corresponds to the standard DEH.

Fig. 4 depicts the density profile, φ(x), obtained by the
three schemes for P = 32 and compares the data to the limit
P → ∞. For κN = 50, the width of the density profile,
ζ∞/REE =

2√
12κN

≈ 0.08,36 is comparable to the bond length⟨b2
x⟩/REE = 1/

√
3P ≈ 0.10. In the limit P → ∞ and κN

→ ∞, the ground-state approximation is accurate and the den-
sity profile takes the form φGS(x) = tanh2(x/ζ). Thus, within
self-consistent field theory, a polymer melt at a hard wall is
similar to the single-chain problem studied in Sec. III A 1.

In the self-consistent field calculations, the FP-DEH prop-
agator (without HW-corrections) results in a finite density
at the wall.18,19 The HW-correction, Eq. (31), already pro-
vides a significant improvement over the FP-DEH scheme, and
the HW-HOA approximation for P = 32 provides indeed very
close estimate of the large-P behavior.

In the limit of fine discretization and κN → ∞, the surface
tension behaves like

γGSR
2
EE

kBT
√
N̄
≈ 2

3


κN
3

�
1 + 0.58

κN

�
≈ 2.7532,19

FIG. 4. Comparison of density profiles of a polymer melt with κN = 50 at a
hard, solid wall for different discretization schemes at fixed P = 32 with the
large-P limit, φ∞(x). The inset presents the ratio φ∞(x)/φ(x).

FIG. 5. Relative error of the surface tension of a polymer melt with κN = 50

and
γ(∞)R2

EE

kBT
√
N̄
= 2.754 77 as a function of the chain discretization P. The

FP-DEH, HW-DEH, and HW-PP schemes yield γ(P) <γ(∞), whereas the
HW-HOA scheme overestimates the asymptotic value, γ(∞), of the surface
tension. The solid lines indicate the expected power-law behavior 1/

√
P,

1/P2, and 1/P4 for the FP-DEH, HW-PP, and HW-HOA schemes, respec-
tively. The dashed line indicates 1/P scaling.

and from the extrapolation of the numerical data towards

P → ∞, we obtain
γ(∞)R2

EE

kBT
√
N̄
= 2.754 77. The relative deviation

of the calculated surface tension from γ(∞) is shown in Fig. 5
as a function of chain discretization P. The FP propagator
gives rise to large deviations from the Gaussian limit, under-
estimating γ(∞). As expected, the error decreases like 1/

√
P.

The HW-DEH, HW-PP, and HW-HOA schemes significantly
improve the estimate. For the P-range that we have investi-
gated, the relative error of the HW-DEH scheme decreases with
a power-law but the effective exponent is slightly smaller than
the expected value−2. For large P, the data are compatible with
a 1/P-behavior within the error bars. Additionally, we have
used the HW-scheme with a primitive propagator according
to the trapezoidal rule (HW-PP), which assigns only half the
weight to the end beads, i.e., wn = wm

n = 1 except for n = 0
and P for which wn = wm

n = 1/2. This HW-PP scheme reduces
the relative error compared to the HW-DEH scheme, and the
power-law, with which the error decreases, is closer to the
expected 1/P2 behavior. Combining the HW-correction and
the high-order discretization yields the best results, and the
numerical data confirm the expected accuracy O(1/P4) of the
HW-HOA scheme. Similar to the behavior of the mean energy
of a chain in a harmonic trap next to a wall (cf. Fig. 3), the
DEH, HW-DEH, and HW-PP schemes underestimate and the
HW-HOA discretization overestimates the value compared to
the large-P limit.

3. Interface tension in a homopolymer blend

The chain discretization is not only important at the
narrow surface of a polymer in contact with a solid sub-
strate but sharp gradients of the polymer density also occur
at the surface of a polymer melt in contact with air, at inter-
faces between strongly incompatible homopolymers, or in
high-χ block copolymer materials. Here, we illustrate the
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advantages of the HOA-scheme by considering the interface
in a symmetric binary AB homopolymer blend at rather large
incompatibility χN = 50. Within the self-consistent field the-
ory or SCMF simulations, A beads at position x experience the
interactions

vA(x)
P
=

κN
P

[φA(x) + φB(x) − 1] + χN
P

φB(x) (36)

and a similar expression holds for vB acting on B beads. The
first term penalizes density fluctuations, and we use κN = 1000
to mimic a nearly incompressible blend. The second term
quantifies the repulsion between unlike polymers, and in our
calculations, we employ the value χN = 50 for the combina-
tion of Flory-Huggins parameter χ and number of segments
per chain. We consider a symmetric blend, PA = PB = P, in
a system of linear dimension Lx/2 = 1.5REE with reflecting
boundaries. Space is discretized into Nx = 128 slabs. In the
limit of fine discretization and large incompatibility, the inter-
facial width is given by w∞/REE ≈ 1/


6χN ≈ 0.058.37

The calculation of the densities, φA(x) and φB(x), and
single-chain partition functions proceeds similar to Eq. (32)
with ηc = 1. Three discretization schemes are used: (1) the
DEH with equal weight of all beads, (2) the PP where the end
beads are assigned half the weight, and (3) the HOA.

Once, self-consistency between the densities, Eq. (32)
with the external fields, Eq. (36), is achieved, the calculations
yield the density profiles across the interface. The grandcanon-
ical free energy per molecule in units of kBT is computed via

ω = − 1
Nx


ix


φA + φB +

κN
2

�{φA + φB}2 − 1
�

+ χNφA(ix)φB(ix)


(37)

and the interface tension measured by Eq. (35). In the strong

segregation limit, the Gaussian chain model predicts
γ(∞)R2

EE

kBT
√
N̄

≈


χN
6

(
1 + 4 ln 2

χN

)
≈ 2.727 for an incompressible system.37

The inset of Fig. 6 depicts the density profile across the
AB interface for P = 32 obtained by the DEH-scheme and
the HOA-scheme and compares the result to the large-P limit,
corresponding to the HOA-result with P = 1024. One observes
that the discretization effects result in profiles that are too
narrow; the deviation is larger for the DEH-scheme than for
the HOA-calculation.

The main panel presents the results for the interface ten-

sion γ normalized by the large-P limit
γ(∞)R2

EE

kBT
√
N̄
= 2.687 85. The

PP calculations underestimate the interface tension and the
HOA-calculations yield too large values. The expected scaling
of the deviation from the large-P limit is indicated by the
solid lines. As expected, we observe an error of order 1/P2

for the PP-scheme, whereas the HOA-calculations achieve an
accuracy of O(1/P4). The inset presents the convergence of
the DEH and PP schemes to P → ∞. The PP scheme nicely
converges according to a 1/P2 correction; however, the DEH
scheme overshoots the asymptotic value, i.e., γ(P) exhibits a
maximum at large P. This behavior indicates that the 1/P2-
behavior observed at intermediate P values is not the true
asymptotics but that there may be an additional, albeit small,

FIG. 6. Deviation of the interface tension γ from its asymptotic large-P

value,
γ(∞)R2

EE

kBT
√
N̄
= 2.687 85, in a symmetric binary polymer blend with χN

= 50 and κN = 1000. Symbols present the self-consistent field calculations,
whereas lines depict the expected power laws. The right inset highlights the
non-monotonic converges of the PP-scheme to the asymptotic result. The left
inset compares the density profiles, obtained by DEH and HOA-calculations
with P = 32, to the results for large P.

1/P-corrections that stems from the errors of integrating the
interactions along the chain.

B. Efficiency test of staging moves

In order to test the efficiency of staging moves, we
computed the time auto-correlation functions (ACF) of the
end-to-end radius, which is the slowest coordinate in the
system. Specifically, we determined

CEE(∆t) ≡ ⟨REE(t + ∆t)REE(t)⟩, (38)

where t enumerates the MC sweeps through the system and ∆t
is the number of MC sweeps between two observations. The
system consists of a harmonic potential of stiffness k = 16,
which is centered at the location of a hard wall, while all other
parameters of the Hamiltonian and thermal energy are set to
unity. In the simulations, we ran staging moves at a fixed level,
i.e., by making n trial moves for the nth fraction of a chain
within each single MC sweep. Thus, one sweep costs roughly
the same CPU time at a given value of P, irrespective of what
fraction of the chain is sampled. The deduced auto-correlation
times (ACT) are relatively insensitive to P, which is why we
present them in Fig. 7 as a function of the fraction of the moved
chain.

At very small chain fractions x, the staging moves become
very inefficient and autocorrelation times increase with 1/x2.
Thus, autocorrelation time is the largest in the limit of x = 1/P
corresponding to single-bead staging moves. At the other end
of very large chain fractions, moves can also become inef-
ficient. The reason is that the trial paths stray too far from
the positions associated with a sufficiently small potential en-
ergy. The optimum fraction is obtained when the effective
spring constant connecting the beginning and the end bead of
the sampled segment is close to the curvature of the external
potential. In heterogeneous systems with zones of high and
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FIG. 7. Inset: End-to-end radius autocorrelation function CEE(∆t) if x = 1/8
of the chain is resampled with staging. Symbols show simulation results
and the full line corresponds to a fit with a stretched exponential. Main
graph: Correlation time deduced from CEE(∆t) for different fractions x of
the resampled chain. At small values of x, the correlation time increases with
1/x2 as indicated by the full line.

small potential curvature, it will therefore be beneficial to
employ V-cycles. They ensure efficient sampling everywhere
while increasing the cost of one sweep only from O(P) to
O(P ln P).

IV. CONCLUSIONS

In this work, we demonstrated that high-order decompo-
sitions of path integrals—introduced for the effective compu-
tation of partition functions of quantum-mechanical point
particles—likewise benefit Gaussian-chain simulations in the
field of polymer physics. Specifically, the rate of convergence
can be increased from the usual 1/P2 to 1/P4, where P is the
number of springs in the harmonic chain. For the method to
be useful for open chains, averages along the chain have to
be performed with specific weights, which differ from those
used for closed chains that are common in path integral calcu-
lations. These techniques provide a substantial improvement
compared to the standard DEH and allow us to approximate
the behavior of Gaussian chain in rapidly varying external
fields with a rather crude chain discretization P. We expect
that these techniques will be advantageous, for instance, to
simulate (i) mixtures of polymers and nanoparticles, which
are characterized by a length-scale separation between the
narrow interface of the nanoparticle in contact with poly-
mer melt and the length scale of the spatial arrangement
of nanoparticles, or (ii) narrow interfaces in high-χ block
copolymer materials that enable the fabrication of sub-10 nm
structures.

In addition, we extended the so-called staging algorithm
to situation where a reflecting wall is present so that a given
fraction of a chain can be sampled in a Monte Carlo simulation
at an essentially constant acceptance ratio, no matter how large
the discretization. We expect this method to be useful not
only for confined chains subjected to an external potential but
also for soft, coarse-grained models or dissipative-particle-
dynamics (DPD) models of polymer films.38 For external or

self-consistent potentials whose derivative disappears on the
surface of the wall, the 1/P4 convergence remains valid by
simply combining hard-wall adopted staging with the high-
order decomposition of the path integral.
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APPENDIX: DRAWING TRIAL COORDINATES
VIA MONTE CARLO FROM APPROXIMATE
DISTRIBUTIONS

In this appendix, we discuss in detail how we generate the
trial coordinates (for end point and midpoint beads) in those
cases, where we cannot directly relate uniform random num-
bers to the desired distributions. The idea is that one converges
extraordinarily quickly to the exact (free-polymer-in-front-of-
a-hard-wall) distribution Pre(x) in a short MC simulation, if
one can draw (at small CPU-time cost) from a bias distribu-
tion Prb(x), that is a reasonable approximation to the exact
distribution.

If xold denotes the present coordinate and xtrial a trial
coordinate drawn from Prb(x), then the transition probability

Prt =
Pre(xtrial)Prb(xold)
Prb(xtrial)Pre(xold) (A1)

satisfies detailed balance. Thus, the exact distribution is ap-
proached more closely with each Metropolis-algorithm-based
MC step if the given transition probability is used. In the
following, we demonstrate how quickly it is approached in
practice for both end point and midpoint beads.

We first consider an end point bead from Sec. II D, for
which the starting bead x1 is neither very far nor very close
to the wall. One can assume that for x1 > σ/

√
2, Gaussian

random numbers are reasonable approximations, while for
x1 < σ/

√
2, random numbers produced with Eq. (26) are

good starting points. According to the ideas just-presented, we
initialize our random variable by drawing it from the respective
bias distribution. We then draw a trial coordinate from the same
distribution and compute the acceptance probability according
to Eq. (A1). We then iterate as needed. In this procedure, trial
coordinates violating the boundary condition are discarded
immediately.

Figure 8 gives an impression of how many MC steps are
needed so that the trial coordinates approach the desired distri-
bution function for end point beads. It shows the “worst-case
scenario” for both bias distributions, that is, for x1 = σ/

√
2,

which separates the regimes where one or the other bias distri-
bution is taken. One can see that one single time step suffices to
produce trial-coordinate distributions that are reasonably close
to the exact distribution. Not shown explicitly is that symbols
overlap with the exact distribution after one additional move
and that another step later, it becomes difficult to ascertain
differences between the exact distribution functions and those
produced by Monte Carlo. In practice, we choose int(4x1/σ
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FIG. 8. Bias functions and probability distribution functions used to ap-
proximate the exact distribution function assuming that the random walk
starts at x1=σ/

√
2 away from a reflecting wall at x = 0, where σ is the

variance of the random walk without walls. The blue dotted lines show the
bias function that is based on Eq. (21) (wall bias), while the red dotted line
refers to a normal distribution (Gaussian bias). Blue circles and red crosses
show the corresponding distributions after one single MC move. The black
line represents the exact distribution function Pr(x2/σ |x1=σ/

√
2) for the

end monomer coordinate x2 given that the random walk starts at position
x1=σ/

√
2.

FIG. 9. Probability distribution for the midpoint bead to be placed at a
position x2/σ. The red dotted lines indicate the bias probability function,
which is a truncated Gaussian having its maximum placed at the same value
of x2 as the fully converged distribution function Pr(x2/σ |x1= x3= 0). Red
crosses and blue plus signs show the distribution obtained after, respectively,
one or two MC steps, which are based on Eq. (A1).

+ 0.5) steps for x1 < σ/
√

2 and int{4 exp(−x2/4σ2) + 0.5}
steps otherwise to yield essentially converged distributions.

To generate trial coordinates for midpoint beads, we pro-
ceed again by using Eq. (A1). As mentioned in the main text,
we first locate (numerically) the point xc, where the exact
distribution has its maximum. It satisfies xc ≥ σ and xc ≥ (x1
+ x3)/2 and it does not need to be known to very high precision.
We then draw Gaussian random numbers with a mean of xmax
and the appropriate variance of σ/

√
2. To investigate the rate

of convergence, we consider again the “worst-case scenario,”

where convergence is slowest, i.e., the case for x1 = x3 ≪ σ,
see Figure 9.

As for the end-bead distribution function, good resem-
blance to the exact distribution is obtained after a single MC
step for the midpoint beads: the boundary condition Pr(x2) = 0
and Pr(x2) ∝ x2 (end beads) as well as Pr(x2) ∝ x2

2 (midpoint
beads) is satisfied after one single Monte Carlo step, though
the prefactors still have small errors. This time, two MC steps
are only almost sufficient to reproduce the exact distribution
function to within symbol size of the graphs. In production
runs, we set the number of steps to int[5{1.2 − tanh(xC/4σ)}2]
and thereby reach sufficient convergence for all practical pur-
poses, though half the number of steps produce identical results
within our stochastic error.
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