000279888 001__ 279888
000279888 005__ 20210129221150.0
000279888 0247_ $$2doi$$a10.1088/0965-0393/23/7/074001
000279888 0247_ $$2ISSN$$a0965-0393
000279888 0247_ $$2ISSN$$a1361-651X
000279888 0247_ $$2WOS$$aWOS:000366449200002
000279888 037__ $$aFZJ-2015-07764
000279888 082__ $$a530
000279888 1001_ $$0P:(DE-Juel1)156431$$aJalkanen, Jari$$b0$$ufzj
000279888 245__ $$aSystematic analysis and modification of embedded-atom potentials: case study of copper
000279888 260__ $$aBristol$$bIOP Publ.$$c2015
000279888 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1450440912_24783
000279888 3367_ $$2DataCite$$aOutput Types/Journal article
000279888 3367_ $$00$$2EndNote$$aJournal Article
000279888 3367_ $$2BibTeX$$aARTICLE
000279888 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279888 3367_ $$2DRIVER$$aarticle
000279888 520__ $$aIn this study, we evaluate the functionals of different embedded-atom methods (EAM) by fitting their free parameters to ab-initio results for copper. Our emphasis lies on testing the transferability of the potentials between systems which vary in their spatial dimension and geometry. The model structures encompass zero-dimensional clusters, one-dimensional chains, two-dimensional tilings, and three-dimensional bulk systems. To avoid having to mimic charge transfer, which is outside the scope of conventional EAM potentials, we focus on structures, in which all atoms are symmetrically equivalent. We find that the simple, four-parameter Gupta EAM potential is overall satisfactory. Adding complexity to it decreases the errors on our set of structures only by marginal amounts, unless EAM is modified to depend also on density gradients, higher-order derivatives, or related terms. All tested conventional EAM functions reveal similar problems: the binding energy of closed-packed systems is overestimated in comparison to open or planar geometries, and structures with small coordination tend to be too rigid. These deficiencies can be fixed in terms of a systematically modified embedded-atom method (SMEAM), which reproduces DFT results on bond lengths, binding energies, and stiffnesses or bulk moduli by typically O(1%), O(5%), and O(15%) accuracy, respectively. SMEAM also predicts the radial distribution function of liquid copper quite accurately. Yet, it does not overcome the difficulty to reproduce the elastic tensor elements of a hypothetical diamond lattice.
000279888 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000279888 588__ $$aDataset connected to CrossRef
000279888 7001_ $$0P:(DE-Juel1)144442$$aMüser, Martin$$b1$$eCorresponding author
000279888 773__ $$0PERI:(DE-600)2001737-6$$a10.1088/0965-0393/23/7/074001$$gVol. 23, no. 7, p. 074001 -$$n7$$p074001 -$$tModelling and simulation in materials science and engineering$$v23$$x1361-651X$$y2015
000279888 8564_ $$uhttps://juser.fz-juelich.de/record/279888/files/pdf.pdf$$yRestricted
000279888 8564_ $$uhttps://juser.fz-juelich.de/record/279888/files/pdf.pdf?subformat=pdfa$$xpdfa$$yRestricted
000279888 909CO $$ooai:juser.fz-juelich.de:279888$$pVDB
000279888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144442$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000279888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144442$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000279888 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000279888 9141_ $$y2015
000279888 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000279888 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000279888 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMODEL SIMUL MATER SC : 2014
000279888 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279888 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279888 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000279888 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279888 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279888 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000279888 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000279888 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000279888 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000279888 980__ $$ajournal
000279888 980__ $$aVDB
000279888 980__ $$aI:(DE-Juel1)JSC-20090406
000279888 980__ $$aUNRESTRICTED