000279889 001__ 279889
000279889 005__ 20210129221150.0
000279889 0247_ $$2doi$$a10.1007/s40544-015-0078-2
000279889 0247_ $$2Handle$$a2128/9609
000279889 0247_ $$2WOS$$aWOS:000209842000004
000279889 037__ $$aFZJ-2015-07765
000279889 082__ $$a530
000279889 1001_ $$0P:(DE-Juel1)145430$$ade Beer, Sissi$$b0$$ufzj
000279889 245__ $$aOn the friction and adhesion hysteresis between polymer brushes attached to curved surfaces: Rate and solvation effects
000279889 260__ $$aBerlin$$bSpringer$$c2015
000279889 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1450443407_24736
000279889 3367_ $$2DataCite$$aOutput Types/Journal article
000279889 3367_ $$00$$2EndNote$$aJournal Article
000279889 3367_ $$2BibTeX$$aARTICLE
000279889 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279889 3367_ $$2DRIVER$$aarticle
000279889 520__ $$aComputer simulations of friction between polymer brushes are usually simplified compared to real systems in terms of solvents and geometry. In most simulations, the solvent is only implicit with infinite compressibility and zero inertia. In addition, the model geometries are parallel walls rather than curved or rough as in reality. In this work, we study the effects of these approximations and more generally the relevance of solvation on dissipation in polymer-brush systems by comparing simulations based on different solvation schemes. We find that the rate dependence of the energy loss during the collision of brush-bearing asperities can be different for explicit and implicit solvent. Moreover, the non-Newtonian rate dependences differ noticeably between normal and transverse motion, i.e., between head-on and off-center asperity collisions. Lastly, when the two opposing brushes are made immiscible, the friction is dramatically reduced compared to an undersaturated miscible polymer-brush system, irrespective of the sliding direction.
000279889 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000279889 588__ $$aDataset connected to CrossRef
000279889 7001_ $$0P:(DE-HGF)0$$aKenmoé, G. Djuidjé$$b1
000279889 7001_ $$0P:(DE-Juel1)144442$$aMüser, Martin$$b2$$eCorresponding author
000279889 773__ $$0PERI:(DE-600)2787589-1$$a10.1007/s40544-015-0078-2$$gVol. 3, no. 2, p. 148 - 160$$n2$$p148 - 160$$tFriction$$v3$$x2223-7690$$y2015
000279889 8564_ $$uhttps://juser.fz-juelich.de/record/279889/files/art_10.1007_s40544-015-0078-2.pdf$$yOpenAccess
000279889 8564_ $$uhttps://juser.fz-juelich.de/record/279889/files/art_10.1007_s40544-015-0078-2.gif?subformat=icon$$xicon$$yOpenAccess
000279889 8564_ $$uhttps://juser.fz-juelich.de/record/279889/files/art_10.1007_s40544-015-0078-2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000279889 8564_ $$uhttps://juser.fz-juelich.de/record/279889/files/art_10.1007_s40544-015-0078-2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000279889 8564_ $$uhttps://juser.fz-juelich.de/record/279889/files/art_10.1007_s40544-015-0078-2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000279889 8564_ $$uhttps://juser.fz-juelich.de/record/279889/files/art_10.1007_s40544-015-0078-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000279889 909CO $$ooai:juser.fz-juelich.de:279889$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000279889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144442$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000279889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144442$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000279889 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000279889 9141_ $$y2015
000279889 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000279889 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000279889 980__ $$ajournal
000279889 980__ $$aVDB
000279889 980__ $$aUNRESTRICTED
000279889 980__ $$aI:(DE-Juel1)JSC-20090406
000279889 9801_ $$aUNRESTRICTED
000279889 9801_ $$aFullTexts