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In this work, we study how including charge transfer into force fields affects the predicted elastic and
vibrational Γ-point properties of ionic crystals, in particular those of rock salt. In both analytical and
numerical calculations, we find that charge transfer generally leads to a negative contribution to the
Cauchy pressure, PC ≡ C12 − C66, where C12 and C66 are elements of the elastic tensor. This contribu-
tion increases in magnitude with pressure for different charge-transfer approaches in agreement with
results obtained with density functional theory (DFT). However, details of the charge-transfer models
determine the pressure dependence of the longitudinal optical-transverse optical splitting and that
for partial charges. These last two quantities increase with density as long as the chemical hardness
depends at most weakly on the environment while experiments and DFT find a decrease. In order to
reflect the correct trends, the charge-transfer expansion has to be made around ions and the chemical
(bond) hardness has to increase roughly exponentially with inverse density or bond lengths. Finally,
the adjustable force-field parameters only turn out meaningful, when the expansion is made around
ions. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936575]

I. INTRODUCTION

A prominent manifestation of many-body interactions is
the violation of Cauchy relations in situations where they
would hold if atoms interacted in a pair-wise fashion: crystals
near mechanical equilibrium, in which all atoms occupy
centrosymmetric positions.1 Cauchy violations are quantified
in terms of so-called Cauchy pressures, e.g., PC ≡ C12 − C66,
the only Cauchy pressure for crystals of cubic symmetry.
Reproducing large positive Cauchy pressures typical for
simple metals received significant attention in the context of
embedded-atom and related models.2–4 In contrast to metals,
many alkali halogens, in particular, those composed by light
elements, have a negative PC, whose magnitude can even
exceed 0.2 C12.5 Another manifestation of many-body effects
is that infrared spectra can, in general, not be described
accurately in terms of models assuming constant atomic
charges or constant dipoles.6

Different approaches have been pursued to describe
many-body effects in simple ionic solids. Early many-body
potentials for ionic compounds assumed polarizable anions
and placed shells7 or classical Drude oscillators8,9 on them.
By now, it has become good practice to include dipolar and
even quadrupolar polarizability into force fields, e.g., for
the simulation of ionic liquids.10 However, inducible dipoles,
or other multipoles below hexadecupoles, cannot account
for a non-zero Cauchy pressure (in rocksalt), because they
remain zero upon a homogeneous deformation of a centro-
symmetric crystal so that only two-body interactions account
for its elastic tensor. More recent approaches assume that
ions can change their size11 and later also their shape12

in response to their environment, whereby they effectively

a)s.sukhomlinov@fz-juelich.de

introduce short-range many-body interactions. Properly
parametrized models of these so-called breathing-shell
potentials13,14 can then correctly describe the elasticity of ionic
solids.

Despite the success of breathing-shell models, the
assumption of a constant partial charge may not always be
justified. Even in a homogeneous system like rock salt, one
may expect that a certain amount of charge is redistributed
between atoms when a crystal is deformed. In fact, the
quantum mechanical ground state of a hypothetical NaCl
crystal with infinitely large lattice constant is composed of
neutral atoms rather than of ions.15 As a consequence of
charge redistribution, the force on an atom induced by a
(local) electrostatic field can be affected by the deformation of
the crystal. This, however, is not properly reflected in fixed-
charge models. Charge-transfer potentials (CTPs)16–20 —
in particular those based on the electronegativity principle
proposed by Sanderson21 — can overcome this limitation.

In this work, we study analytically and by means of
computer simulations how including charge transfer into force
fields affects the elastic and vibrational (Γ-point) properties
of (centrosymmetric) ionic solids. Towards this end, we focus
on NaCl in the rocksalt structure, for which we develop an
interaction model that only contains two-body short-range
repulsion and charge-transfer related energies. Regarding
elasticity, our emphasis lies on the Cauchy pressure and how
it changes with density. As finite Cauchy pressures are solely
due to charge transfer between atoms in CTP-based force
field which contain no additional many-body interactions, we
also study how partial charges change with density. Since the
splitting of longitudinal optical (LO) and transverse optical
(TO) is in turn related to Born effective charges, we also
investigate the pressure-dependence of the LO-TO frequency
splitting in the center of the Brillouin zone.

0021-9606/2015/143(22)/224101/12/$30.00 143, 224101-1 © 2015 AIP Publishing LLC
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A highly accurate and transferable potential certainly
necessitates many-body contributions in addition to charge
transfer terms, for example, those contained in breathing
shell or quantum Drude oscillator models. They would affect
the predictions for elasticity and LO-TO splitting. However,
we ignore these contributions, because our objective is to
scrutinize the generic properties of charge-transfer potentials
rather than to develop a highly accurate interaction potential
for rock salt.

The remainder of this work is structured as follows:
Section II contains numerical methods and some theoretical
background, specifically a brief review on classical elasticity
theory for finite stress, a generalization of the Cauchy violation
to non-zero pressure, and the definition of Born effective
charge (tensors) or Bader charge. Additionally, we present the
density functional theory (DFT) methodology that was used
to produce the reference data for NaCl. The general form of
CTPs is described in Section III, where we also derive how
CTPs affect the Cauchy pressure and partial charges, which in
turn drive the LO-TO splitting. In Section IV, we parametrize
different CTP approaches and compare the predictions of the
respective force-field based simulations to analytical formulae
and DFT results. Conclusions are drawn in Section V.

II. METHODS AND THEORETICAL BACKGROUND

A. Elasticity at zero and non-zero stress

In this section, we review basic aspects of the theory of
elasticity at finite stress. We see such an overview as necessary
because we are not aware of a compact representation that
explains why the definition of elastic strain is not unique
and how seemingly subtle differences between them — as well
as the choice of the thermodynamic reference potential —
affect the results for elastic constants. The presented sub-
tleties are irrelevant for most solids at ambient pressures, but
care needs to be taken whenever the bulk or the shear modulus
of a solid is no longer large compared to an external stress.
Therefore, we repeat common definitions for strain, stress,
and elastic tensors, which become relevant at large pressure
P, and summarize their mutual relations. This includes a
generalization of the Cauchy violation to finite pressures.

We note that the full tensor notation is used only here in
Section II A, while Voigt notation is employed outside of it.
In the Voigt notation, pairs of indices are lumped into a single
index. For example, selected strain tensor components read
ε11 → ε1 and ε12 → 2ε6.

1. Strain tensors

Solids deform under a change of external stress.
Mathematically, the deformation is stated by a mapping x(X),
where X denotes a (Cartesian) coordinate of one particular
material point in the original reference structure and x denotes
the final position of the same material point.

In this work, we restrict our attention to linear mappings
for which the displacement field

u(X) ≡ x(X) − X (1)

is a linear function of X. Component by component,
Eq. (1) reads uα = xα − Xα with α = 1,2,3. To describe
(the rotationally invariant part of) linear deformations, two
(symmetric) tensors of rank two can be defined.

The Eulerian strain tensor22 is defined by

εαβ =
1
2

(
∂uα

∂Xβ
+

∂uβ

∂Xα

)
. (2)

It relates the original coordinate — up to a rotation — to the
final coordinate via the linear transformation

xα = (δαβ + εαβ)Xβ, (3)

where we have used, as we will in the following, the Einstein
summation convention. Since ε is symmetric, it has six
independent coefficients in three-dimensional space.

The Lagrangian strain tensor η23 — also known as
Green-Lagrangian finite-strain tensor — is defined such that
the squared vector length of any final coordinate in a linear
mapping is given by

x2 = X2 + 2ηαβXαXβ. (4)

The components of the Lagrangian strain tensor are given by

ηαβ =
1
2

(
∂uα

∂Xβ
+

∂uβ

∂Xα
+

∂uγ
∂Xα

∂uγ
∂Xβ

)
. (5)

The two strain tensors are only equivalent up to linear
order. Their relation can be expressed as

ηαβ = εαβ +
1
2
εαγεγβ, (6)

εαβ = ηαβ −
1
2
ηαγηγβ +O(η3). (7)

Since Eulerian and Lagrangian strain tensors are
equivalent only in the first order, the second derivatives or
the second-order expansion coefficients of a quantity T (taken
with respect to the strain tensor components) are not identical
unless the first derivatives disappear. This can be seen from
expressing the Taylor series expansion of a function T ,

T = T0 + T (η)
αβηαβ +

1
2

T (η)
αβγδηαβηγδ +O(η3) (8)

in terms of ε. Substituting Equation (6) into (8) and
rearranging terms yield

T = T0 + T (η)
αβεαβ +

1
2

(
T (η)
αβγδ + T (η)

αδ δβγ
)
εαβεγδ + · · ·, (9)

where δβγ is the Kronecker delta. Thus, by comparing
coefficients, one can conclude that the first derivatives with
respect to η or ε coefficients are identical and that the second-
order coefficients obey

T (ε)
αβγδ = T (η)

αβγδ + T (η)
αδ δβγ. (10)

In this expansion, we have not yet exploited the symmetry
of the strain tensor. Since εαβ = εβα, any tensor can be
symmetrized accordingly. For example, when using

T sym
αβγδ =

1
4
�
Tαβγδ + Tαβδγ + Tβαγδ + Tβαδγ

�
(11)

in a Taylor series expansion instead of the original second
derivatives, the result remains unchanged. In the following,
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we assume that all tensors are symmetrized. Second-order
expansion coefficients then obey

∆Tαβγδ =
T (η)
αδ δβγ + T (η)

αγ δβδ + T (η)
βδ δαγ + T (η)

βγ δαδ

4
, (12)

where ∆T ≡ T (ε) − T (η). Selected components are

∆T1111 = T11, (13)
∆T1122 = 0, (14)

∆T1212 =
1
4
(T11 + T22) , (15)

which are useful relations for the analysis of elastic tensors
for (cubic) systems under finite stress.

As an example, we consider the volume. If V0 denotes the
volume of the reference structure, the volume of a strained
structure is

V = V0

���������

1 + ε11 ε12 ε13

ε12 1 + ε22 ε23

ε13 ε23 1 + ε33

���������

. (16)

Thus, the relative volume change, ∆v ≡ (V − V0)/V0, to second
order in ε is

∆v = ε11 + ε22 + ε33 + ε11ε22 + ε22ε33 + ε33ε11

−
�
ε2

12 + ε
2
13 + ε

2
23

�
. (17)

Substitution of Eq. (7) into the above equation gives

∆v = η11 + η22 + η33 + η11η22 + η22η33 + η33η11

− 1
2
�
η2

11 + η
2
22 + η

2
33

�
− 2

�
η2

12 + η
2
13 + η

2
23

�
. (18)

One can see that ∂2∆v/∂ε2
12 = −2, while ∂2∆v/∂η2

12 = −4.
The difference between these second derivatives is equal
to ∂∆v/∂η11 + ∂∆v/∂η22. When considering the degeneracy
factor of the expansion, this result is readily seen to be
consistent with Equation (15).

In reference to computer simulation of periodically
repeated cells, we note that the Eulerian strain is useful
when taking numerical derivatives of the energy with respect
to strain and even more so in the context of constant
stress simulations, in which case the six independent tensor
components are treated as dynamical variables. If the vectors
spanning the simulation box are arranged in a matrix h, the
component of a real coordinate (of unit length) is given by
Rα = hαβ R̃β, where R̃ with 0 ≤ R̃α < 1 denotes a reduced
cell coordinate. Deformation of the reference box can then be
described in a straightforward fashion by

hαβ = (δαγ + εαγ)href
γβ, (19)

where href is the reference h-matrix, e.g., the expected average
shape of the simulation cell at the reference pressure.

2. Stress and elastic tensors

Stress and elastic or stiffness tensors can be loosely
defined as the first and the second derivative of the energy
density of a solid with respect to the strain. These lax
definitions are sufficient for practical purposes when both

external stress and thermal fluctuations can be considered
small. Numerical values for the pertinent tensor elements
are then automatically close to those deduced from acoustic
phonons or stress-strain measurements.24 Once stress can no
longer be considered small, the elastic tensor elements differ
between the two strain definitions. Once thermal fluctuations
start to matter (as well), different results can be obtained
depending on which thermodynamic potential T is converted
into energy density. Candidates are internal energy U, free
energy F, enthalpy H , Gibbs free energy G, or for non-
isotropic stresses, an appropriate generalization of the Gibbs
free energy. Since we do not examine finite temperature
in this work, we consider the thermodynamic potentials
U and H (both evaluated at zero temperature) by default.
Readers interested in finite temperature elasticity and Maxwell
relations for elastic tensors may consider reading Ref. 25.

In Sec. II A 1, we showed that the first derivative of
an arbitrary function with respect to strain does not depend
on which definition for strain is used. Thus, we obtain the
same stress tensor σ when defining it as the first derivative
of the energy with respect to either Eulerian or Lagrangian
strain. Such an equivalence no longer holds for the second
derivatives.

Different names are used for the elastic constants in the
literature depending on the choice of thermodynamic potential
and strain.24,26,27 For example, Voigt (Brugger) constants are
the second derivative of the internal energy density with
respect to Eulerian (Lagrangian) strain.27 In addition, at non-
zero temperature, one can distinguish between isothermal and
adiabatic elastic constants, depending on the thermodynamic
boundary conditions or the choice of the thermodynamic
potential.28

To avoid confusion between the zoo of possible definitions
for elastic tensor elements, we specify elastic constants with
two superscripts. The first gives the thermodynamic potential
and the second provides the strain definition, for example,

CHη
αβγδ ≡

1
V0

∂2H
∂ηαβ∂ηγδ

. (20)

These coefficients are called the Birch coefficients.26 The
tensor of Birch coefficients has special significance, because
it has to be positive definite in order for a structure to be stable
at constant pressure.29,30

In numerical calculations of stiffness coefficients, it is
easier to work with the Eulerian strain and the internal energy.
To determine elements of CUε

αβγδ of a cubic structure, it is then
beneficial to know the relation between the bulk modulus

B ≡ − ∂P
∂ ln V

(21)

and the CUε
αβγδ. For an isotropic pressure, applied to a solid of

cubic symmetry, it is readily shown that

CUε
1122 =

3
2

B − 1
2

CUε
1111 −

P
2
. (22)

By applying Equation (10) to Equation (22), the Lagrange-
strain-based elastic tensor can be calculated in a straight-
forward fashion from the Euler-strain-based one, where Tαβ

corresponds to the stress tensor element σαβ. As a result, one
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obtains

CUη
1111 = CUε

1111 + P, (23)

CUη
1122 = CUε

1122, (24)

CUη
1212 = CUε

1212 + P/2. (25)

3. Cauchy relations for central potentials
at finite stress

The Cauchy relations state that the elastic tensor of a
crystalline structure is symmetric in all indices, e.g., C1212
= C1122.1 They hold, for non-fortuitous reasons, if atoms
sitting on symmetry sites interact through central potentials
and thermal (or ionic quantum) fluctuations are negligible. At
finite pressures, Cauchy relations are valid only for CUη

αβγδ, as
we quickly demonstrate in the following.

Let us denote atomic coordinates in the reference frame
by Ri and in the strained lattice by ri. For central potentials,
the total energy of a (strained) crystal can be written as

U =

i, j>i

Wi j(r2
i j), (26)

where r2
i j is the squared distance between atoms i and j

and Wi j a distance-dependent two-body potential. The energy
can be differentiated twice with respect to Lagrangian strain
tensor components using Equation (4). The result of the
differentiation gives the elastic tensor elements at the reference
structure

CUη
αβγδ = 4


i, j>i

Ri j,αRi j, βRi j,γRi j,δW ′′
i j(R2

i j), (27)

if not only the initial but also the final atomic positions ri
correspond to equilibrium (symmetry) sites. Obviously, the
CUη stiffness tensor remains invariant to any permutation of
indices. Thus, the CUη satisfy the Cauchy relation not only at
zero but also any isotropic stress under the given conditions.
We therefore define a general expression for Cauchy pressure
as

Pc = CUη
12 − CUη

44 . (28)

B. Bader and Born effective charges

A central aspect of this work is to investigate how
charge-transfer potentials affect the violation of the Cauchy
relations, whereby we correlate a (predicted) deformation-
induced redistribution of charge and the Cauchy pressure. It
is certainly desirable to also directly compare the predicted
charge redistribution to those of full quantum-mechanical
treatments. Doing this is difficult, because charge distribution
in our force-field description is fully characterized by partial
atomic charges, which, however, are not uniquely defined in a
full quantum-mechanical treatment.31–35

Despite these difficulties, there are well-defined quantities
that reflect charge (re)distribution in both force-field-based
and full electronic-structure approaches. One such quantity is
the Born effective charge (tensor), which has, amongst others,
the following advantages: first, unlike some other charge-
assignment schemes, its definition does not require biased

input. Second, the Born effective charge (tensor) follows from
the redistribution of electron density that occurs in response to
a (non-homogeneous) deformation, i.e., it relates to a change
of charge distribution rather than to “absolute charges.” Third,
the Born effective charge can be deduced experimentally from
the LO-TO splitting given that the high-frequency dielectric
permittivity is known.36,37

The elements of the Born effective charge tensor of a
given atom i (in a finite system, i.e., one in which no periodic
boundary conditions apply) can be defined as

Q∗i,αβ ≡
∂µα
∂ri, β

, (29)

where µα is the α component of the total dipole of the system.
Unfortunately, dipoles cannot be uniquely defined in

periodically repeated system. However, one can relate the
dipole to the polarization p times the primitive cell volume Ω
and consider the pertinent expression in Fourier space in the
long wavelength limit.38 This leads to an alternative definition
of the Born effective charge tensor in periodically repeated
systems as

Q∗i,αβ ≡ Ω lim
|k|→0

∂ p̃α(k)
∂r̃i, β(k)

�����E=0
, (30)

while setting macroscopic electric field E to zero. We note that
the charge tensor of an atom located in a cubic environment
has only one independent component Q∗i , i.e., Q∗i,αβ = Q∗iδαβ.
In this case, one can call it the Born effective charge.

A disadvantage of the Born effective charge for the
present purpose is that it contains distributions related to the
polarization within an atom, i.e., the Born effective charge of a
fixed-charge, inducible-dipole potential is not constant. Since
we ignore such polarizability, we may not be in a position to
reproduce the Born effective charge to a high accuracy, the
more so as it can (and does, see Sec. IV) exceed an elementary
charge in alkali halides. We therefore also consider Bader
charges32 as an alternative, unambiguous charge assignment
scheme. Bader divides the space into regions separated by
the zero-flux surface of the electron density. Each such region
contains a nucleus and all electron densities in that region
are assigned to that nucleus. In this work, we used the Bader
charge analysis code as described in Refs. 39–41.

C. DFT methods

In order to have full control over the proper definition
of elastic tensor elements, we decided to parametrize and
compare our force-field approach only to DFT42,43 results
rather than to experiments. However, we chose the DFT
method which best reproduced experimental results. In
addition, by comparing to DFT simulations, we can deduce
Born effective charges at any given stress or density.

All calculations were performed using DFT as imple-
mented in the QUANTUM ESPRESSO code.44 To identify
a suitable DFT method for our purpose, we investigated
different combinations of exchange-correlation functionals
and basis sets. Among the available functionals, we chose
the approximations for exchange-correlation functionals by
Perdew, Burke, and Ernzerhof45 (PBE), Becke, Lee, Yang, and
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Parr (BLYP),46 as well as Perdew and Wang47 (PW91). As
pseudopotentials, we considered norm-conserving Trouiller-
Martins (MT),48 norm-conserving Hartwigsen-Goedecker-
Hutter-Teter,49 and the projector augmented wave (PAW)
basis.50 All pseudopotentials were downloaded from the
QUANTUM ESPRESSO library. We ensured convergence
with respect to the plane-wave cutoff energy together with the
Monkhorst-Pack sampling of the Brillouin zone51 in all runs.

Out of the tested combinations, we found that PBE+PAW
(PBE functional combined with projected-augmented waves
basis) and PW91+MT (PW91 functional combined with
Trouiller-Martins norm-conserving pseudopotential) repro-
duced best the ratios of the different elastic tensor elements
that were measured experimentally at low temperature. Out
of these two, we chose PW91+MT, as it was closer to
low-temperature experimental results (see Table I). For this
combination, it proofed sufficient to truncate the plane-wave
expansion of the electronic wavefunctions at 110 Ry and to
sample the Brillouin zone on a 14 × 14 × 14 Monkhorst-Pack
mesh.

III. CHARGE-TRANSFER POTENTIALS

Polarizable force fields approximately describe the
redistribution of charge induced by deformations of molecules
and solids. Phenomenologically, one can distinguish between
on-site polarizability, e.g., in the form of inducible point
dipoles,56 and/or charge transfer between sites.19 In this
work, we only consider the latter for mainly two reasons.
First, in simple ionic compounds, crystalline positions lie
on symmetry sites so that no dipoles develop during
a homogeneous deformation. Second, including on-site
polarizability complicates all analytical expressions without
affecting qualitatively results deduced in this work.

A. General formulation

In the present work, we consider a force field of the form

U = USR +UCTP, (31)

where USR is a two-body, short-range potential and UCTP a
charge-transfer potential.

The simplest and most successful functional form for
short-range repulsion is a simple exponential,57

USR =

i, j<i

U0, i j e−ri j/ai j, (32)

where U0, i j and ai j are parameters of unit energy and
length, respectively. For NaCl in the rocksalt structure,
one usually only considers short-range repulsion between
(adjacent) sodium and chlorine ions, although we also include
short-range repulsion between chlorine ions.

The charge-transfer potential allows one to assign partial
atomic charges on the fly. In general, the assignment of
charges is done following a minimization principle. Here, we
consider the split-charge equilibration (SQE) model19 as a
prototypical charge transfer potential. It is a hybrid between
the traditional electronegativity equalization model (EEM)16

and the atom-atom charge transfer (AACT) model.18 Recently,
SQE has been derived from a controlled approximation of
density functional theory.20

In SQE, an atomic charge is written as

Qi =

j

qi j, (33)

where qi j represents the amount of charge transferred
from atom j to atom i, which implies the antisymmetry
of q : qi j = −qj i. The total charge-transfer potential to be
minimized in SQE reads

U tot
CTP =


i

(
χiQi +

1
2
κiQ2

i

)
+

1
2


i


j>i

κi jq2
i j

+
1
2


i


j,i

Ji j(ri j)QiQ j. (34)

The first-order parameter χi and the second-order parameter κi
are the atomic electronegativity and hardness, respectively,17

κi j is called the hardness of the bond connecting atoms i and
j (similar to the one introduced in Ref. 58). EEM is obtained
in the limit κi j → 0, while AACT corresponds to κi → 0.
Ji j(ri j) represents the electrostatic interaction between two
atoms. Various terms appearing in Equation (34) are now
discussed in more detail.

In our parameterization, we use the Mulliken definition of
atomic electronegativity and hardness, which both represent
the finite difference approximation of the electron energy with

TABLE I. Data contained in the learning set (PW91+MT). For comparison, we include an alternative DFT
method (PBE+PAW) as well as experimental values. When comparing to experimental data, we always choose the
most recent experiment (i.e., the top one). PA is the “anisotropy pressure,” which we define asC44− (C11−C12)/2.
The units are Å for length, GPa for pressure, and cm−1 for frequencies.

a0 B0 −PC PA ωLO ωTO P(V1,2) χ2
PW91+MT χ2

exp

PW91+MT 5.628 23.9 1.55 −4.43 245.9 149.5 6.77, −3.18 n.a. 1.59
PBE+PAW 5.689 23.2 0.54 −5.30 243.3 150.3 8.43, −2.75 0.94 1.71
exp52 5.634 28.0 8.93, −3.29 2.22 n.a.
exp53 5.640 23.8 257.0 164.7
exp54 26.6 2.08 −9.74
exp55 27.4 1.39 −9.90
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respect to the total number of electrons,

χi =
Ii + Ai

2
, (35)

κi = Ii − Ai. (36)

Here, Ii and Ai are atomic ionization energies and electron
affinities, respectively.

The electrostatic potential Ji j(ri j) in Equation (34) is
often approximated as a Coulomb interaction between point
charges. Sometimes, however, the singularity of the Coulomb
interaction is screened, e.g., via

Ji j(ri j) = erf(αi jri j)
ri j

. (37)

It represents the coupling between two Gaussian charge
distributions g(r) given by

gi(r) =



1
2πρ2

i




3/2

exp(−(r − ri)2/2ρ2
i), (38)

where ri is the position of atom i, while ρi can be viewed
as an effective radius of atom i. For this Gaussian charge
distribution, the parameter αi j in (37) reads

αi j = *
,

1
2ρ2

i + 2ρ2
j

+
-

1/2

. (39)

1. Application to the rocksalt structure

When considering neutral atoms as reference, the energy
per atom in the rocksalt structure can be written in a compact
form as

UCTP = ∆χQ +
1
2
κCQ2. (40)

Here, Q represents the charge on a sodium atom and ∆χ is the
electronegativity difference normalized to atoms rather than
to dimers, that is,

∆χ ≡ (χNa − χCl)/2. (41)

The term κC includes all hardnesses summarized in

κT =
κNa + κCl

2
+

κNaCl

12
(42)

as well as the Coulomb interaction, i.e.,

κC = κT −
αM(η)

a
, (43)

where αM(η) represents the Madelung “constant”, which we
consider a function of the strain. In the case of screened
Coulomb potentials, it also depends on the reference bond
length a.

The charge minimizing UCTP is

Q = −∆χ/κC (44)

so that the minimized energy reads

UCTP = −∆χ2/2κC. (45)

B. Redox-reactive charge-transfer potentials

Chemical reactions, in particular redox reactions, usually
imply a quasi-discontinuous change of the electronic structure
upon small atomic displacements. Such sudden changes are
not captured by force fields assigning a unique potential
energy surface that smoothly evolves as a function of atomic
coordinates. The description of (redox) reactions requires one
to formulate potentials on different energy surfaces, that is,
one needs a description not only for the quantum mechanical
ground state surface (whose energy generally does evolve
smoothly with coordinates) but also for excited states.

In the context of modeling redox reactions with CTPs, it
was recently proposed to include a formal oxidation number
ni for each atom as a discrete variable such that the set of
oxidation number defines the Landau Zener level on which
the system is moving.15,59 An atomic charge — in the redox
split-charge equilibration (R-SQE) method — then reads

Qi = nie +

j

qi j . (46)

We refer to the literature for technical details59,60 and also
discuss some aspects in Section III B 1. Here, it shall suffice to
state that the inclusion of formal oxidation numbers (a) allows
one to extend simulations to non-equilibrium situations, such
as they occur, for example, during triboelectrification,59 or the
discharge of a Galvanic element,60,61 (b) is needed to properly
describe the polarizability of zwitter-ionic molecules,62 (c)
does not require one to make major modifications to the
formulae derived in this manuscript for conventional CTPs,
however, and (d) does require one, in principle, to assign
(independent) interaction parameters for each oxidation state
of an element.

1. Application to the rocksalt structure

Expressing the CTP energy in the R-SQE formalism can
be done in a similar fashion as in CTPs having neutral atoms
as reference. This time, the energy reads

UR−SQE = ∆χR(Q − 1) + κR

2
(Q − 1)2 − αM

2a
Q2, (47)

where ∆χR is now defined with respect to the ionized
states, i.e., ∆χR = (χNa+ − χCl−)/2, κR is the (total) chemical
hardness relevant for the ionized or redox reference state
without Coulomb interactions, i.e., the analogue to κT
introduced in Sec. III A.

By regrouping the terms in Equation (47), UR−SQE can
be brought into the same functional form as the conventional
CTP energy in Equation (40),

UR−SQE = const + (∆χR − κR)Q +
(
κR −

αM

a

) Q2

2
, (48)

where const = κR/2 − ∆χR.
Equation (48) reveals that — at this level of theory —

there are no formal differences between a CTP expansion
around neutral atoms or ions, at least as long as we disregard
an environment dependence of the hardness terms. Thus,
a potential based on R-SQE can be parametrized to give
identical results to those of a CTP with neutral atoms in the
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reference. The only difference lies in the numerical values of
the coefficients and their interpretation.

C. Environment-dependent redox
charge-transfer potentials

So far, we have treated all potential interaction parameters
as being constant. The underlying assumption is that quantities
such as atomic hardness or electronegativity are (effectively)
only mildly environment dependent. However, there is at least
one parameter in our model for which this assumption may
be poorly justified. According to Cioslowski,58 the chemical
bond hardness has exponential asymptotics at large atomic
separation. Its specific distance or environment dependence
for bond lengths close to equilibrium may no longer satisfy
the exponential asymptotics. Nonetheless, in a previous study
on the NaCl molecule,59 an exponential distance dependence
of κNa+Cl− allowed us to reproduce partial charges deduced
from DFT-based calculations quite reasonably.

In a solid, the bond hardness terms can potentially have
a more complex environment dependence than in molecules.
As a starting point, we nevertheless assume their asymptotic,
exponential form for the lack of an obvious, similarly
simple alternative. In our parameterization study, we only
consider such an environment dependence for an expansion
around the ionic state and abbreviate the ensuing full method
“environment-dependent redox split-charge equilibration” as
EDR-SQE. However, as a default, that is in all other CPTs
studied here, we keep treating all hardness terms as constant.

One could certainly also expect κNaCl to be distant or
environment dependent if one took neutral atoms as reference.
However, this will not be investigated in this work for the
following reason: atomic reference states are only meaningful
for bond lengths exceeding ≈3.7 nm, at which point the
difference between the ionization energy of sodium and the
electron affinity of chlorine INa − ACl ≈ 1.5 eV exceeds the
Coulomb interaction in the rocksalt structure.

Another environment-dependent term in a R-SQE model
could be the electron affinity of an anion, e.g., ACl−. For an
isolated anion, it should be very small, because the second
excess electron will delocalize at a large distance of the
original anion thereby keeping its kinetic energy as well as
Coulomb and exchange interaction to a minimum. In a solid,
however, the additional excess electron is effectively confined
to the space attributed to the anion. This space becomes rather
small at large pressure so that A−Cl can become a large negative
number. As we have no model to account for this effect, we
exclude large positive pressures from our EDR-SQE analysis.

It might be worth mentioning that including environment-
dependent terms in a R-SQE model, such as distance
dependent bond hardnesses, requires one to compute
additional derivatives when calculating forces on atoms. In
general, the evaluation of these derivatives can be implemented
such that only few extra floating-point operations need to be
conducted.

D. Cauchy violation in CTPs at finite pressure

To discuss the effect of charge-transfer potentials on
the Cauchy violation, we need to calculate the second-order

derivatives of the energy UCTP with respect to strain-tensor
elements. We do this for the rocksalt structure but note that
the equations are similar for other ionic solids with inversion
symmetry.

Expanding the UCTP{∆χ, κC,Q} in Equation (40) around
a (cubic) reference state, one time assuming a fixed charge
of Q = −∆χ2/κC(ηref) in the FC approach, and another time
allowing charge transfer in the CTP approach, leads to the
following relation for second derivatives of the energies:

∂2U(FC)
∂ηi∂η j

− ∂2U(CTP)
∂ηi∂η j

=
∆χ2

κC

∂ ln κC

∂ηi

∂ ln κC

∂η j

= κC
∂Q
∂ηi

∂Q
∂η j

. (49)

This equation reveals that the Cauchy pressure contribution
from charge transfer potentials in NaCl structures is strictly
non-positive in cubic structures, since ∂Q/∂η1 = ∂Q/∂η2 is
not identical zero unlike ∂Q/∂η4.

Including the possibility for a strain-dependence of the
bond hardness, κNaCl(η), the following Cauchy pressure can
be obtained from evaluating Equation (49) around a cubic
reference structure:

−PC =
1
V0



κC

(
∂Q
∂η1

)2

+
Q2

24
*
,

∂2κNaCl

∂η2
6

− ∂2κNaCl

∂η1∂η2

+
-



. (50)

The second summand in the curly brackets on the r.h.s. of
Equation (50) can, in principle, take any arbitrary value.
However, it disappears as long as the individual κNaCl is
constant or merely distance dependent. In this approximation,
CTP-induced Cauchy pressures are strictly negative, and thus,
we still find that

C12(CTP) < C66(CTP). (51)

E. Born effective charges in CTPs

For a system without periodic boundary conditions, the
dipole of a CTP system, assuming no on-site polarizability, is
defined as

p =

j

Q jr j . (52)

The Born effective charge tensor elements of atom i then read

Q∗i,αβ = Qiδαβ +

j

∂Q j

∂ri, β
r j,α, (53)

where we have expanded around neutral atomic references
n j = 0 ∀ j.

For periodically repeated systems, the dipole cannot
be defined for reasons discussed in more detail in the
literature.63 However, an excess dipole ∆p can be defined
in a straightforward fashion in the context of models where
charge transfer only occurs locally, as is the case in the AACT
or the SQE model. One can then write

∆p =

i j

qi jri j, (54)
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where the ri j must abide the minimum-image conventions.
The Born-charge tensor elements then become

Q∗i,αβ =

j

(
qi jδαβ +

∂qi j
∂ri j, β

ri j,α

)
(55)

for a reference state consisting of neutral atoms. Thus, in
general, the Born charge tensor of an atom is not simply
proportional to the identity matrix. Instead, its symmetry
reflects the symmetry of the environment into which the given
atom is embedded.

When free ions are the reference, their integer charges
need to be added to the Born effective charge tensor in (55),
i.e.,

Q∗i,αβ → nieδαβ +Q∗i,αβ. (56)

The Born effective charge tensor is identical to the partial
charge times the identity matrix as long as the atoms are
located in a site with inversion symmetry and induced dipoles
are neglected. This is because the sum over the second term
on the r.h.s. of Equation (55) adds up to zero under these
circumstances. Otherwise, Born and partial charge may differ.

Since the qi j and the ri j change sign upon reversing the
order of their indices, the SQE-based Born effective charge
tensors obey the so-called acoustic sum rule64

i

Q∗i,αβ =

i

nieδαβ, (57)

where the sum over all oxidation numbers on the r.h.s. of the
equation is the net charge of the system.

IV. RESULTS

A. DFT results and force-field parameterization
of fixed-charge potentials and conventional CTPs

In order to parametrize a potential, it is beneficial to have
reliable, self-consistent, and sufficient data. Often, there is not
enough experimental information to fully define the adjustable
parameters in a meaningful fashion and/or to have a consistent
set of data to test force-field based predictions. This is why
we parametrize the force fields in the work exclusively to
DFT-based data.

Our fixed-charge potential, which we consider for
comparison purposes, has five adjustable parameters, U0,NaCl,
aNaCl, U0,CaCl, aClCl, and QNa. In the conventional charge-
transfer potential, QNa is no longer a parameter, but instead
we need to adjust κT and ∆χ. Thus, we need to calibrate our
potential against at least six independent reference data points.
The parameterization of our EDR-SQE potential is handled
differently than for the CTPs in which the (bond) hardness
terms are treated constant, see Section IV B.

As input reference data, we chose as follows: the lattice
constant a0, three independent components of the elastic tensor
(rewritten as bulk modulus, Cauchy pressure, and anisotropy
pressure), the two optical vibrational frequencies at the
Γ-point ωLO,TO — all at mechanical equilibrium — as well
as the pressure at one density 15% above and another density
15% below the equilibrium density (which allows one to fix

the change of bulk modulus with pressure B′ = dB/dP). The
numbers are listed in Table I.

To calibrate the parameters, we construct a χ2 penalty
function according to

χ2 =
1
n wn


n

wn
{On −On(DFT)}2

(∆On)2 . (58)

Here, On is the nth observable as predicted by a model
potential, On(DFT) the corresponding value from DFT, ∆On

is the target accuracy of the observable, and wn is the weight
of the observable reflecting its importance that we assign
to it. The χ2 penalty function is therefore designed such
that χ2 = 1 separates the domain where the target accuracies
are reproduced on average from that where they are not
achieved. The respective accuracies and weights are
summarized in Table II. The fits turn out rather robust, which
means that as long as we do not alter the weights by an
order magnitude, the deduced force field parameters vary only
mildly.

The parameters obtained from minimizing our χ2 penalty
function are listed in Table III. The results for each
parameterization are summarized in Table IV.

We first discuss the results from our fits in the context of
an expansion about neutral atoms. Taking values for electron
affinities and ionization energies of neutral atoms, which
were obtained from DFT, i.e., ACl ≈ 5.5 eV, ANa ≈ 2.1 eV, ICl
≈ 11 eV, INa ≈ 3.5 eV, we would have expected ∆χ ≈ −2.7 eV
and κT = 3.5 eV + κNaCl/12. Thus, our result for ∆χ is off by
a factor of five. Moreover, the estimate for κNaCl would be
260 eV. This value seems unreasonably large, as one might
expect κNaCl to correlate with the band gap of NaCl.15 Given
that the experimental band gap of rock salt is around 9 eV,66

the bond hardness turns out roughly thirty times greater than
expected.

In the context of R-SQE, one also can assume most
terms from DFT calculations, ANa+ = INa, INa+ ≈ 42 eV, and
ICl− = ACl; however, ACl− is not known and therefore treated
as a fit parameter. Likewise, κNa+Cl− is deduced from the fit,
i.e., (∆χ†, κR) in Table III can be used to get estimates for ACl−

and κNa+Cl−. Using the definitions from Section III B, one can
write

ACl− = INa+ + ANa+ − ICl− − 4∆χR. (59)

We find a value of ACl− = −3.05 eV, which is perfectly
meaningful, since it is energetically unfavorable to place an
extra electron onto a chlorine ion. Solving a linear equation
for κNa+Cl− in the R-SQE formalism leads to κNa+Cl− = 18.5 eV.
This value is only a factor of 2 higher than the experimental
value rather than a factor of 30 as before. Thus, the adjustable
parameters take physically meaningful values.

TABLE II. Significance and the weight of observables entering the fit.

a0 B0 −PC PA ωi P(Vi)
wn 1 0.5 0.25 0.25 0.5 0.25
∆On 0.01 a0 0.1 B0 0.1 B0 0.1 B0 0.05ωi 0.1 P(Vi)
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TABLE III. Force field parameters. The units are eV for energy, Å for length,
and the elementary charge for charges. To describe distributed charges, Gaus-
sians centered on atoms, atomic radii proposed by Shannon65 were used:
RNa= 0.51 Å and RCl= 0.91 Å. The term ∆χ† is identical to ∆χ for an
expansion about a reference of neutral atoms. In expansions about ions, ∆χ†

corresponds to ∆χR−κR.

U0,NaCl aNaCl U0,ClCl aClCl QNa −∆χ† κT,R

Fixed point
charges

15 362.0 0.2296 25.9 0.5973 0.88

Fixed distributed
charges

36 053.5 0.2082 51.7 0.5542 0.89

CTP point charges 48 497.1 0.2067 59.5 0.5470 14.32 25.11
CTP distributed
charges

84 291.8 0.1941 99.0 0.5124 13.07 23.37

B. Parametrization of EDR-SQE

An immediate consequence of treating (bond) hardness
terms constant is that the partial charge of ions in rock salt
(and other ionic solids) is generally predicted to increase
monotonically with increasing pressure. The reason is that the
Coulomb interactions favor large charges at small interatomic
distances. However, in experimental67 and DFT-based68

studies of ionic crystals — and also in our DFT calculations
of rock salt — the trend is opposite: partial charges (Bader or
effective Born, different in DFT but identical in CTPs that do
not consider dipoles on atoms) initially increase when bond
lengths are stretched from equilibrium to larger distances,
even if the ultimate dissociation limit should be neutral atoms.
These trends are revealed for NaCl in Figure 1, where we
show not only Born effective charges but also Bader charges.

To reproduce the correct trend, we follow the suggestion59

to expand SQE around ions and to make the combined
hardness increase when the bonds are stretched. We name
such an expansion as EDR-SQE. For the NaCl dimer,
a reasonable description of partial charges was given by
introducing an exponential distance dependence of the bond
hardness.59 Unfortunately, there can be a more general
environment dependence of the (bond) hardness terms in
the bulk. The simplest approach giving reasonable (Bader)
charges is to make the total hardness an exponential function
of the bond length a. Assuming ACl− = −12.1 eV and
κT(a) = 2.66 eV exp(−a/0.928 Å) while keeping all other
ionic terms fixed to their experimental values gives the EDR-
SQE charge shown in Figure 1. The short-range interactions
of the EDR-SQE were then fitted to the same set of data as the
other CTPs. We only excluded the Cauchy and the anisotropy
pressure from the parameterization, as their fit would have
necessitated knowledge of the environment dependence of the

FIG. 1. Born effective and Bader charges (different in DFT but identical
in the other shown approaches) as a function of the isotropic pressure P
as obtained by DFT, by the fixed charges approximation, the conventional
charge-transfer potential (CTP), and the environment-dependent redox-split-
charge equilibration (EDR-SQE) potential.

total hardness beyond isotropic compression. The adjustable
parameters defining the short-range interaction in EDR-SQE
are listed in Table V.

C. Pressure dependence of selected quantities

To investigate the quality of potentials outside the domain
of the learning set, we compute the pressure dependence of
most quantities on which the adjustable parameters were
gauged. However, we restrict our attention to three cases,
which are representative for a number of possibilities that
result from switching “on” or “off” the following options:
short-range repulsion between chlorine anions, distributed
charges, and charge transfer. In the latter case, we can
furthermore ignore or consider an ionic reference state and
an environment dependent chemical hardness. Out of these
possibilities, we decided to consider one fixed-charge, one
conventional charge-transfer potential, and one charge transfer
potential with non-zero reference redox state and EDR-SQE.
In all four cases, we include the short-range repulsion between
chlorine atoms, as it is not possible otherwise — in the
realm of the potential surfaces investigated here — to obtain
reasonably accurate optical frequencies in the Γ point. For
the fixed-charge approach, we used distributed charges, while
for the fluctuating charge models, we used point charges,
as these gave slightly better fits near equilibrium for the
respective treatments for the system in either cases. We note
that this means only one additional adjustable parameter for
the charge-transfer potential, as many of its parameters are

TABLE IV. Learning set produced by models. The units are Å for length, GPa for pressure, and cm−1 for
frequencies.

a0 B0 −PC PA ωLO ωTO P(V1,2) χ2

Fixed point charges 5.607 25.8 0.00 −5.83 248.0 135.2 7.24, −3.21 0.804
Fixed distributed charges 5.606 25.7 0.00 −5.83 249.1 135.2 7.24, −3.19 0.794
CTP point charges 5.600 25.1 3.20 −5.27 251.8 139.9 7.20, −2.93 0.511
CTP distributed charges 5.600 25.1 3.04 −5.34 253.0 139.2 7.22, −2.90 0.573
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TABLE V. Short-range interaction parameters of the redox-SQE force field
with environment-dependent bond hardness term. The units are eV for energy
and Å for length.

U0,NaCl aNaCl U0,ClCl aClCl

EDR-SQE point-charges 438.4 0.3683 0.010 46 2.664

taken either from DFT or from the literature and not fine
tuned any further. This includes the screening lengths for
short-range Coulomb interactions as well as the ionization
energies and electron affinities of the involved atoms or ions.
Thus, in one case, we have the fixed charge as a fit parameter,
and in the other case, a total hardness as well as an effective
electronegativity.

We start the analysis of our “test set” with the pressure
dependence of the Cauchy pressure in Fig. 2. One can readily
notice that the charge-transfer potentials produce the Cauchy
pressure with the correct sign at ambient conditions. However,
they overcorrect it by a non-negligible amount compared to a
fixed-charge approach, for which PC in rock salt disappears
by definition. Yet, the charge-transfer potentials produce the
correct trend, that is, the negative of the Cauchy violation
increases with increasing isotropic pressure P.

We note that it appears necessary to induce another many-
body term into our force field in addition to charge transfer,
i.e., one that counteracts the overestimation of −PC and that
can reproduce positive Cauchy pressures for P < −2 GPa.
A natural candidate for this would be to augment the
charge-transfer potential with terms deriving from quasi-atom
theory, as done, for example, by Streitz and Mintmire.69 Such
additional terms naturally lead to positive Cauchy pressures.
We abstain from parametrizing such a potential here, as the
focus of this study is on investigating the generic effects of
charge-transfer potentials on physical properties rather than
on designing a highly accurate and transferable potential. To
achieve the latter, our aim would be — as in our design of
potential for copper70 — to construct it such that the potential

FIG. 2. Negative of the Cauchy pressure PC as a function of the isotropic
pressure P obtained either by DFT or the fixed-distributed-charges approx-
imation, or the point-charge-transfer potential, or environment-dependent
redox-SQE point charges potential. Dashed lines represent the analytical
solutions according to Equation (50).

FIG. 3. Equation of state, P(V ), as obtained by DFT, by the fixed-
distributed-charge approximation, the point-charge-transfer potential, and the
environment-dependent redox-SQE point charges potential. The inset shows
the equation of state with larger magnification around small pressures.

does not only work for a single geometry, i.e., for rock salt but
for many different bonding environments. Such an endeavor
is outside of the present scope.

We next investigate the equation of state (EOS) in
Figure 3. The fixed-charge approach appears to reproduce
the EOS slightly better than conventional CTPs; however,
differences are only minor. In these two cases, the predicted
isotropic pressure becomes too large at large densities, which
could mean that the exponential repulsion is too stiff at
high compression. However, the EDR-SQE model, which
best reproduces the EOS, underestimates the pressure at
small volumes. We conclude that the EOS is an unsuitable
function on which to gauge adjustable, charge-transfer related
parameters.

The pressure dependence of longitudinal and transverse
optical frequencies in the Γ point also turns out rather
insensitive to whether charges are fixed or adjustable, as
one can see in Figure 4. This result, however, can be
readily rationalized: for crystals in which each atom has
an equilibrium position with inversion symmetry, induced

FIG. 4. Longitudinal (ωLO) and transverse (ωTO) optical Γ-point frequen-
cies as a function of the isotropic pressure P as obtained by DFT, by the
fixed-distributed-charges approximation, the point-charge-transfer potential,
and the environment-dependent redox-SQE point charges potential.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.94.122.86 On: Fri, 18 Dec 2015 12:53:27



224101-11 S. V. Sukhomlinov and M. H. Müser J. Chem. Phys. 143, 224101 (2015)

FIG. 5. Measure for the LO-TO splitting, Vp
�
ω2

LO−ω
2
TO

�
, as a function of

the isotropic pressure P as obtained by DFT, by the fixed-distributed-charges
approximation, the point-charge-transfer potential, and the environment-
dependent redox-SQE point charges potential.Vp is the primitive cell volume.

charges can only be quadratic in the displacement of an
optical Γ-point vibration. As such, Γ-point frequencies remain
unaffected by the charge transfer induced by an optical Γ-
point vibration. This time, the EDR-SQE model appears to
show the least satisfactory agreement with the DFT data.
This shortcoming might have been expected as we have not
optimized the general strain dependence of the total hardness
beyond isotropic compression. However, as we demonstrate
next, EDR-SQE best reproduces how the LO-TO splitting
depends on pressure.

In Figure 5, we show the pressure dependence of the LO-
TO splitting as a function of pressure P. More specifically,
we show the splitting ω2

LO − ω
2
TO times the volume of the

primitive unit cell, Vp, as this product is constant in a fixed-
charge approach. Conventional CTPs without environment-
dependent or bond-length-dependent chemical hardnesses
predict the wrong slope for how our measure for the LO-
TO splitting depends on pressure. This was to be expected,
as the LO-TO splitting is induced by the long-range electric
fields of the (Born effective) charges.36 In fact, the ratio
Vp(ω2

LO − ω
2
TO)/(Q∗αα)2 turns out to be insensitive to density.

Thus, since the conventional CTPs predict the wrong sign of
dQ/dP, they also predict the wrong trend for how our measure
for the LO-TO splitting depends on P.

The EDR-SQE potential predicts the correct trend for
how our measure for the LO-TO splitting depends on P;
however, the slope turns out too small. This short-coming
could have also been expected since the Bader charges, on
which we parametrized the potential, show a smaller pressure
dependence than the Born effective charges. We deduce from
Figure 5 that charge transfer only accounts for roughly 25% of
the pressure dependence of the LO-TO splitting. The missing
contribution must come from the atomic polarizability, which
can be reflected, for example, by models originally proposed
by Madden and Wilson.10,71

V. CONCLUSIONS

The first main result of this study is that charge
transfer potentials generally induce a negative contribution

to the Cauchy pressure, which increases in magnitude with
increasing density. This type of behavior is revealed in rock
salt, however, to a lesser extent than one would expect if
charge transfer were the only many-body interaction. Thus,
it seems as if additional many-body effects inducing positive
Cauchy pressures were needed for this — and in all likelihood
for any — ionic solid. An ionic solid for which charge transfer
might dominate the Cauchy pressure even at ambient pressure
is lithium hydride (LiH). Like NaCl, LiH has no directed
bonds and crystallizes in the rocksalt lattice. However, the
value for C44 ≈ 48 GPa exceeds that for C12 ≈ 14 GPa by
more than a factor of three, which results in a Cauchy pressure
of −34 GPa.72

Our analysis also reveals that, as long as the environment
dependence of bond hardnesses is ignored, different charge-
transfer approaches are formally equivalent as far as structural
or elastic Γ-point properties are concerned, e.g., elastic tensor,
equation of state, Γ-point optical phonons, and even partial
or Born effective charges. Results can also be identical
between CTPs expanding around the atomic or the ionic
reference state. In this sense, fitting adjustable parameters
to Γ-point properties does not allow one to ascertain which
CTP is the best suited. This might be counterintuitive as the
dielectric response function of different CTPs can differ quite
substantially, i.e., conventional CTPs treat systems as perfect
metals, while the split-charge model behaves like a dielectric
unless the bond hardness is set to zero, in which case SQE
reduces to a conventional CTP.

The difference between various CTP approaches without
environment-dependent hardnesses (in regard to Γ point
properties) lies in the numerical values for the parameters
and their subsequent interpretation. For example, if we
parametrized our potential relative to neutral atoms and
used reasonable values for electron affinities and ionization
energies, then we would need to boost the hardness term
by as much as 22 eV. Irrespective of whether the boost of
hardnesses is placed directly as an environment correction
to the atomic hardnesses (the measured combined hardness
being 3.5 eV) or as an extra bond hardness (which would need
to be as large as 260 eV), the added hardness would have to
be called meaningless. The increase of the electronegativity
difference between Na and Cl atoms from 5 eV for free atoms
to 29 eV in the crystal appears to be even more nonsensical. In
contrast, when the parameterization is interpreted as being a
SQE expansion around ionic states, we only need to introduce
a bond hardness of 18 eV. This is perfectly meaningful, as the
SQE bond hardness can be interpreted as a measure for the
band gap, which in NaCl happens to be 9 eV.

Models with constant bond hardness predict a decrease
in the Born effective charges, as well as formal atomic
charges, with increasing bond length, which is contrary to
DFT results. In order to fix this issue, one can introduce
environment-dependent (bond) hardnesses, which should
increase monotonically at large separations. In the simplest
approach, one could assume that the (bond) hardness is
simply an exponential function of the bond length. While this
approach allows one to reproduce (Bader) charges reasonable
well, reality might be more complicated. A simple bond-
length dependence of the (bond) hardness leads to a rather
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large overestimation of the (negative) Cauchy pressure. The
correct functional dependencies for the (hardness) parameters
in charge transfer potentials remain to be researched.
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