000279927 001__ 279927
000279927 005__ 20240712100902.0
000279927 0247_ $$2doi$$a10.5194/amt-8-1491-2015
000279927 0247_ $$2ISSN$$a1867-1381
000279927 0247_ $$2ISSN$$a1867-8548
000279927 0247_ $$2Handle$$a2128/9614
000279927 0247_ $$2WOS$$aWOS:000352158300033
000279927 037__ $$aFZJ-2015-07800
000279927 082__ $$a550
000279927 1001_ $$0P:(DE-Juel1)151304$$aTrinh, Thai$$b0$$eCorresponding author$$ufzj
000279927 245__ $$aA comprehensive observational filter for satellite infrared limb sounding of gravity waves
000279927 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2015
000279927 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1450445382_26260
000279927 3367_ $$2DataCite$$aOutput Types/Journal article
000279927 3367_ $$00$$2EndNote$$aJournal Article
000279927 3367_ $$2BibTeX$$aARTICLE
000279927 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279927 3367_ $$2DRIVER$$aarticle
000279927 520__ $$aThis paper describes a comprehensive observational filter for satellite infrared limb sounding of gravity waves. The filter considers instrument visibility and observation geometry with a high level of accuracy. It contains four main processes: visibility filter, projection of the wavelength on the tangent-point track, aliasing effect, and calculation of the observed vertical wavelength. The observation geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are mimicked. Gravity waves (GWs) simulated by coupling a convective GW source (CGWS) scheme and the gravity wave regional or global ray tracer (GROGRAT) are used as an example for applying the observational filter. Simulated spectra in terms of horizontal and vertical wave numbers (wavelengths) of gravity wave momentum flux (GWMF) are analyzed under the influence of the filter. We find that the most important processes, which have significant influence on the spectrum are the visibility filter (for both SABER and HIRDLS observation geometries) and aliasing for SABER and projection on tangent-point track for HIRDLS. The vertical wavelength distribution is mainly affected by the retrieval as part of the "visibility filter" process. In addition, the short-horizontal-scale spectrum may be projected for some cases into a longer horizontal wavelength interval which originally was not populated. The filter largely reduces GWMF values of very short horizontal wavelength waves. The implications for interpreting observed data are discussed.
000279927 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000279927 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000279927 588__ $$aDataset connected to CrossRef
000279927 7001_ $$0P:(DE-Juel1)142033$$aKalisch, S.$$b1$$ufzj
000279927 7001_ $$0P:(DE-Juel1)129143$$aPreusse, P.$$b2$$ufzj
000279927 7001_ $$0P:(DE-HGF)0$$aChun, H.-Y.$$b3
000279927 7001_ $$0P:(DE-HGF)0$$aEckermann, S. D.$$b4
000279927 7001_ $$0P:(DE-Juel1)129117$$aErn, M.$$b5$$ufzj
000279927 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b6$$ufzj
000279927 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-8-1491-2015$$gVol. 8, no. 3, p. 1491 - 1517$$n3$$p1491 - 1517$$tAtmospheric measurement techniques$$v8$$x1867-8548$$y2015
000279927 8564_ $$uhttps://juser.fz-juelich.de/record/279927/files/amt-8-1491-2015.pdf$$yOpenAccess
000279927 8564_ $$uhttps://juser.fz-juelich.de/record/279927/files/amt-8-1491-2015.gif?subformat=icon$$xicon$$yOpenAccess
000279927 8564_ $$uhttps://juser.fz-juelich.de/record/279927/files/amt-8-1491-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000279927 8564_ $$uhttps://juser.fz-juelich.de/record/279927/files/amt-8-1491-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000279927 8564_ $$uhttps://juser.fz-juelich.de/record/279927/files/amt-8-1491-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000279927 909CO $$ooai:juser.fz-juelich.de:279927$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000279927 9141_ $$y2015
000279927 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000279927 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279927 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000279927 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2014
000279927 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279927 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000279927 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000279927 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000279927 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000279927 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279927 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279927 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151304$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000279927 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142033$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000279927 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000279927 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000279927 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000279927 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000279927 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000279927 9801_ $$aUNRESTRICTED
000279927 9801_ $$aFullTexts
000279927 980__ $$ajournal
000279927 980__ $$aVDB
000279927 980__ $$aUNRESTRICTED
000279927 980__ $$aI:(DE-Juel1)IEK-7-20101013
000279927 981__ $$aI:(DE-Juel1)ICE-4-20101013