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In this Reply, we respond to the Comment [Phys. Rev. D 92, 018501 (2015)]. Our computation [Phys.
Rev. D 91, 074512 (2015)] only took into account pure QCD effects, arising from quark mass differences,
so it is not surprising that there are discrepancies in isospin splittings and in the Σ-Λ mixing angle. We
expect that these discrepancies will be smaller in a full calculation incorporating QED effects.
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We agree with Gal [1] that lattice numbers for the mixing
angle are not complete until numbers for the isospin
splittings are correctly accounted for. In our paper [2],
the calculation only includes QCD effects arising from
quark mass differences. For a complete result, a full
calculation with QED effects added is also needed.
Before addressing the main issue, we would first like to

mention that it is not surprising that our results satisfy the
Coleman-Glashow [3] and Dalitz–von Hippel (Eq. (3) of
[4]) relations. Our fit function has all the SUð3Þ symmetry
constraints built in, so it automatically obeys every sym-
metry relation to the appropriate order. In this case,
violations of the Coleman-Glashow relation are at
Oðδm3Þ, while violations of the Dalitz–von Hippel relation
are at Oðδm2Þ.
We believe that lattice QCD gives reliable numbers for

the part of the isospin splitting due to quark mass
differences, and that the differences between the values
in [2] and the experiment are mainly due to electromagnetic
effects. Our reasons to believe that lattice numbers for the
purely QCD contribution are accurate are the following:
first, the lattice gives good values for the splittings between
the multiplets (N;Λ;Σ;Ξ), and it is hard to see how there
could be a systematic error that would spoil the isospin
splittings without also showing up in splittings between
multiplets. Second, at leading order, pure QCD relates the
isospin splittings to the splittings between the multiplets
through the relations
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(see Fig. 2 of [5]). Our simulations show that this
leading-order formula only has minor corrections from
higher-order effects, and the above relations hold reason-
ably well, with a value ≈0.022 for the quark mass ratio
ðmd −muÞ=ðms −muÞ. The main systematic uncertainty in
this mass ratio is due to the difficulty of correcting for
electromagnetic effects in the pseudoscalar meson sector. In
Fig. 1 we show the splitting values. The squares and circles
are consistent with each other, but do not reproduce the full
result without adding a non-QCD force (namely QED).
The relations (1) do not hold in the real world, which we

take this as evidence that the QED corrections to the isospin
splittings are substantial. Simulations with QED included
[6] show that QED effects on the isospin splittings are
comparable with the effects of the ðmd −muÞ difference,
and that the combined simulation reproduces the physical
numbers very closely. Unfortunately, we do not have lattice
results for the QED shift in the Σ0 mass, so we cannot
estimate the QED effect in the mixing matrix element.
In the paper by Isgur [7] there are electrostatic

(Coulomb) contributions to the isospin splittings, but they
cancel completely for the combination ½ðMΣ0 −MΣþÞ−
ðMn −MpÞ�, which, by the Dalitz–von Hippel relation, is
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proportional to the Σ-Λ mixing angle. If this holds, we
would expect to see some shifts in the isospin splittings, but
no Coulomb contribution to the mixing angle. However,
this exact cancellation is model dependent. The Coulomb
contributions in [7] are calculated for a particular Gaussian
wave function, which has more symmetry than required by
QCD. For equal-mass quarks, the Isgur spatial wave
function is completely symmetric under exchange of any
quark pair. Since the octet is a mixed symmetry multiplet,
we do not expect complete symmetry. In the proton (uud)
there is no theorem that says h1=ruui ¼ h1=rudi.
We have applied our flavor analysis to QED effects too.

We find that there are five allowed coefficients for the
electromagnetic effects, one of which just shifts all masses
by the same amount, making no contribution to splitting or
mixing. In terms of these coefficients, we find (assuming
small mixing angle)
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as the general expression for the electromagnetic contri-
bution to the masses and
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for the mixing matrix element. (We fit to the squares of the
masses—the form of the expansion is, of course, the same if
a fit to the masses themselves is made.) It may readily be
checked that these electromagnetic contributions satisfy the
Coleman-Glashow and Dalitz–von Hippel relations for any
value of the BEM coefficients.
In the Isgur model, these coefficients are not all

independent. The Coulomb terms of the Isgur model follow
the pattern

BEM
3 ¼ BEM

4 ¼ −BEM
1 ; BEM

2 ¼ 0; ð4Þ
which in turn ensures that there is no Coulomb contribution
to the mixing; see Eq. (3). However, these interrelations are
model dependent, and we need lattice calculations to see
how well they hold.
We are currently working on a combined simulation with

QED effects included. Preliminary results suggest that
QED effects do account for much of the difference between
the current QCD-only results and the experimental values.
In the Isgur model, it is expected that although the
individual splittings will be changed by QED effects, the
QED contribution to the Σ-Λmixing angle will cancel. This
is, however, a model-dependent statement, with other
choices for the spatial wave function the cancellation
would not be complete. Our joint QED and QCD results
are not yet at the point where we can comment on how
much the mixing angle is changed by QED, but we are
grateful to Gal for bringing the issue to our attention and
will certainly include a discussion of the question when we
have our final results.
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FIG. 1 (color online). Baryon octet (mass splittings)2. Black
squares are from Eq. (1), while blue circles the lattice QCD
results. Both use the pure QCD numbers from Table 5 of [2]. Red
stars use the physical values (i.e. for QCD and QED).
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