000279956 001__ 279956 000279956 005__ 20240712100957.0 000279956 0247_ $$2doi$$a10.5194/acp-15-14005-2015 000279956 0247_ $$2ISSN$$a1680-7316 000279956 0247_ $$2ISSN$$a1680-7324 000279956 0247_ $$2Handle$$a2128/9615 000279956 0247_ $$2WOS$$aWOS:000367384200010 000279956 0247_ $$2altmetric$$aaltmetric:21827978 000279956 037__ $$aFZJ-2015-07813 000279956 041__ $$aEnglish 000279956 082__ $$a550 000279956 1001_ $$0P:(DE-HGF)0$$aWagner, A.$$b0$$eCorresponding author 000279956 245__ $$aEvaluation of the MACC operational forecast system – potential and challenges of global near-real-time modelling with respect to reactive gases in the troposphere 000279956 260__ $$aKatlenburg-Lindau$$bEGU$$c2015 000279956 3367_ $$2DRIVER$$aarticle 000279956 3367_ $$2DataCite$$aOutput Types/Journal article 000279956 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1471586658_22762 000279956 3367_ $$2BibTeX$$aARTICLE 000279956 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000279956 3367_ $$00$$2EndNote$$aJournal Article 000279956 520__ $$aThe Monitoring Atmospheric Composition and Climate (MACC) project represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (http://www.copernicus.eu/), which became fully operational during 2015. The global near-real-time MACC model production run for aerosol and reactive gases provides daily analyses and 5-day forecasts of atmospheric composition fields. It is the only assimilation system worldwide that is operational to produce global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the MACC analysis system to simulate tropospheric concentrations of reactive gases covering the period between 2009 and 2012. A validation was performed based on carbon monoxide (CO), nitrogen dioxide (NO2) and ozone (O3) surface observations from the Global Atmosphere Watch (GAW) network, the O3 surface observations from the European Monitoring and Evaluation Programme (EMEP) and, furthermore, NO2 tropospheric columns, as well as CO total columns, derived from satellite sensors. The MACC system proved capable of reproducing reactive gas concentrations with consistent quality; however, with a seasonally dependent bias compared to surface and satellite observations – for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the year, with monthly modified normalised mean biases (MNMBs) ranging between −30 and 30 % at the surface. Model biases are likely to result from difficulties in the simulation of vertical mixing at night and deficiencies in the model's dry deposition parameterisation. Observed tropospheric columns of NO2 and CO could be reproduced correctly during the warm seasons, but are mostly underestimated by the model during the cold seasons, when anthropogenic emissions are at their highest level, especially over the US, Europe and Asia. Monthly MNMBs of the satellite data evaluation range from values between −110 and 40 % for NO2 and at most −20 % for CO, over the investigated regions. The underestimation is likely to result from a combination of errors concerning the dry deposition parameterisation and certain limitations in the current emission inventories, together with an insufficiently established seasonality in the emissions. 000279956 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0 000279956 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1 000279956 588__ $$aDataset connected to CrossRef 000279956 7001_ $$0P:(DE-HGF)0$$aBlechschmidt, A.-M.$$b1 000279956 7001_ $$0P:(DE-HGF)0$$aBouarar, I.$$b2 000279956 7001_ $$0P:(DE-HGF)0$$aBrunke, E.-G.$$b3 000279956 7001_ $$0P:(DE-HGF)0$$aClerbaux, C.$$b4 000279956 7001_ $$0P:(DE-HGF)0$$aCupeiro, M.$$b5 000279956 7001_ $$0P:(DE-HGF)0$$aCristofanelli, P.$$b6 000279956 7001_ $$0P:(DE-HGF)0$$aEskes, H.$$b7 000279956 7001_ $$0P:(DE-HGF)0$$aFlemming, J.$$b8 000279956 7001_ $$0P:(DE-HGF)0$$aFlentje, H.$$b9 000279956 7001_ $$0P:(DE-HGF)0$$aGeorge, M.$$b10 000279956 7001_ $$0P:(DE-HGF)0$$aGilge, S.$$b11 000279956 7001_ $$0P:(DE-HGF)0$$aHilboll, A.$$b12 000279956 7001_ $$0P:(DE-HGF)0$$aInness, A.$$b13 000279956 7001_ $$0P:(DE-HGF)0$$aKapsomenakis, J.$$b14 000279956 7001_ $$0P:(DE-HGF)0$$aRichter, A.$$b15 000279956 7001_ $$0P:(DE-HGF)0$$aRies, L.$$b16 000279956 7001_ $$0P:(DE-HGF)0$$aSpangl, W.$$b17 000279956 7001_ $$0P:(DE-Juel1)3709$$aStein, O.$$b18$$ufzj 000279956 7001_ $$0P:(DE-HGF)0$$aWeller, R.$$b19 000279956 7001_ $$0P:(DE-HGF)0$$aZerefos, C.$$b20 000279956 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-15-14005-2015$$gVol. 15, no. 24, p. 14005 - 14030$$n24$$p14005 - 14030$$tAtmospheric chemistry and physics$$v15$$x1680-7324$$y2015 000279956 8564_ $$uhttp://www.atmos-chem-phys.net/15/14005/2015/acp-15-14005-2015.pdf 000279956 8564_ $$uhttps://juser.fz-juelich.de/record/279956/files/acp-15-14005-2015.pdf$$yOpenAccess 000279956 8564_ $$uhttps://juser.fz-juelich.de/record/279956/files/acp-15-14005-2015.gif?subformat=icon$$xicon$$yOpenAccess 000279956 8564_ $$uhttps://juser.fz-juelich.de/record/279956/files/acp-15-14005-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000279956 8564_ $$uhttps://juser.fz-juelich.de/record/279956/files/acp-15-14005-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000279956 8564_ $$uhttps://juser.fz-juelich.de/record/279956/files/acp-15-14005-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000279956 8564_ $$uhttps://juser.fz-juelich.de/record/279956/files/acp-15-14005-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000279956 909CO $$ooai:juser.fz-juelich.de:279956$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire 000279956 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000279956 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000279956 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000279956 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2014 000279956 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000279956 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000279956 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000279956 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000279956 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000279956 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2014 000279956 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000279956 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000279956 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000279956 9141_ $$y2015 000279956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)3709$$aForschungszentrum Jülich GmbH$$b18$$kFZJ 000279956 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0 000279956 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1 000279956 920__ $$lyes 000279956 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0 000279956 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1 000279956 9801_ $$aUNRESTRICTED 000279956 9801_ $$aFullTexts 000279956 980__ $$ajournal 000279956 980__ $$aVDB 000279956 980__ $$aI:(DE-Juel1)IEK-8-20101013 000279956 980__ $$aI:(DE-Juel1)JSC-20090406 000279956 980__ $$aUNRESTRICTED 000279956 981__ $$aI:(DE-Juel1)ICE-3-20101013 000279956 981__ $$aI:(DE-Juel1)JSC-20090406