000279956 001__ 279956
000279956 005__ 20240712100957.0
000279956 0247_ $$2doi$$a10.5194/acp-15-14005-2015
000279956 0247_ $$2ISSN$$a1680-7316
000279956 0247_ $$2ISSN$$a1680-7324
000279956 0247_ $$2Handle$$a2128/9615
000279956 0247_ $$2WOS$$aWOS:000367384200010
000279956 0247_ $$2altmetric$$aaltmetric:21827978
000279956 037__ $$aFZJ-2015-07813
000279956 041__ $$aEnglish
000279956 082__ $$a550
000279956 1001_ $$0P:(DE-HGF)0$$aWagner, A.$$b0$$eCorresponding author
000279956 245__ $$aEvaluation of the MACC operational forecast system – potential and challenges of global near-real-time modelling with respect to reactive gases in the troposphere
000279956 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000279956 3367_ $$2DRIVER$$aarticle
000279956 3367_ $$2DataCite$$aOutput Types/Journal article
000279956 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1471586658_22762
000279956 3367_ $$2BibTeX$$aARTICLE
000279956 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279956 3367_ $$00$$2EndNote$$aJournal Article
000279956 520__ $$aThe Monitoring Atmospheric Composition and Climate (MACC) project represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (http://www.copernicus.eu/), which became fully operational during 2015. The global near-real-time MACC model production run for aerosol and reactive gases provides daily analyses and 5-day forecasts of atmospheric composition fields. It is the only assimilation system worldwide that is operational to produce global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the MACC analysis system to simulate tropospheric concentrations of reactive gases covering the period between 2009 and 2012. A validation was performed based on carbon monoxide (CO), nitrogen dioxide (NO2) and ozone (O3) surface observations from the Global Atmosphere Watch (GAW) network, the O3 surface observations from the European Monitoring and Evaluation Programme (EMEP) and, furthermore, NO2 tropospheric columns, as well as CO total columns, derived from satellite sensors. The MACC system proved capable of reproducing reactive gas concentrations with consistent quality; however, with a seasonally dependent bias compared to surface and satellite observations – for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the year, with monthly modified normalised mean biases (MNMBs) ranging between −30 and 30 % at the surface. Model biases are likely to result from difficulties in the simulation of vertical mixing at night and deficiencies in the model's dry deposition parameterisation. Observed tropospheric columns of NO2 and CO could be reproduced correctly during the warm seasons, but are mostly underestimated by the model during the cold seasons, when anthropogenic emissions are at their highest level, especially over the US, Europe and Asia. Monthly MNMBs of the satellite data evaluation range from values between −110 and 40 % for NO2 and at most −20 % for CO, over the investigated regions. The underestimation is likely to result from a combination of errors concerning the dry deposition parameterisation and certain limitations in the current emission inventories, together with an insufficiently established seasonality in the emissions.
000279956 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000279956 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000279956 588__ $$aDataset connected to CrossRef
000279956 7001_ $$0P:(DE-HGF)0$$aBlechschmidt, A.-M.$$b1
000279956 7001_ $$0P:(DE-HGF)0$$aBouarar, I.$$b2
000279956 7001_ $$0P:(DE-HGF)0$$aBrunke, E.-G.$$b3
000279956 7001_ $$0P:(DE-HGF)0$$aClerbaux, C.$$b4
000279956 7001_ $$0P:(DE-HGF)0$$aCupeiro, M.$$b5
000279956 7001_ $$0P:(DE-HGF)0$$aCristofanelli, P.$$b6
000279956 7001_ $$0P:(DE-HGF)0$$aEskes, H.$$b7
000279956 7001_ $$0P:(DE-HGF)0$$aFlemming, J.$$b8
000279956 7001_ $$0P:(DE-HGF)0$$aFlentje, H.$$b9
000279956 7001_ $$0P:(DE-HGF)0$$aGeorge, M.$$b10
000279956 7001_ $$0P:(DE-HGF)0$$aGilge, S.$$b11
000279956 7001_ $$0P:(DE-HGF)0$$aHilboll, A.$$b12
000279956 7001_ $$0P:(DE-HGF)0$$aInness, A.$$b13
000279956 7001_ $$0P:(DE-HGF)0$$aKapsomenakis, J.$$b14
000279956 7001_ $$0P:(DE-HGF)0$$aRichter, A.$$b15
000279956 7001_ $$0P:(DE-HGF)0$$aRies, L.$$b16
000279956 7001_ $$0P:(DE-HGF)0$$aSpangl, W.$$b17
000279956 7001_ $$0P:(DE-Juel1)3709$$aStein, O.$$b18$$ufzj
000279956 7001_ $$0P:(DE-HGF)0$$aWeller, R.$$b19
000279956 7001_ $$0P:(DE-HGF)0$$aZerefos, C.$$b20
000279956 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-15-14005-2015$$gVol. 15, no. 24, p. 14005 - 14030$$n24$$p14005 - 14030$$tAtmospheric chemistry and physics$$v15$$x1680-7324$$y2015
000279956 8564_ $$uhttp://www.atmos-chem-phys.net/15/14005/2015/acp-15-14005-2015.pdf
000279956 8564_ $$uhttps://juser.fz-juelich.de/record/279956/files/acp-15-14005-2015.pdf$$yOpenAccess
000279956 8564_ $$uhttps://juser.fz-juelich.de/record/279956/files/acp-15-14005-2015.gif?subformat=icon$$xicon$$yOpenAccess
000279956 8564_ $$uhttps://juser.fz-juelich.de/record/279956/files/acp-15-14005-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000279956 8564_ $$uhttps://juser.fz-juelich.de/record/279956/files/acp-15-14005-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000279956 8564_ $$uhttps://juser.fz-juelich.de/record/279956/files/acp-15-14005-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000279956 8564_ $$uhttps://juser.fz-juelich.de/record/279956/files/acp-15-14005-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000279956 909CO $$ooai:juser.fz-juelich.de:279956$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000279956 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000279956 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000279956 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000279956 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2014
000279956 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000279956 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000279956 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000279956 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000279956 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000279956 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2014
000279956 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000279956 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000279956 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000279956 9141_ $$y2015
000279956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)3709$$aForschungszentrum Jülich GmbH$$b18$$kFZJ
000279956 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000279956 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000279956 920__ $$lyes
000279956 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000279956 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000279956 9801_ $$aUNRESTRICTED
000279956 9801_ $$aFullTexts
000279956 980__ $$ajournal
000279956 980__ $$aVDB
000279956 980__ $$aI:(DE-Juel1)IEK-8-20101013
000279956 980__ $$aI:(DE-Juel1)JSC-20090406
000279956 980__ $$aUNRESTRICTED
000279956 981__ $$aI:(DE-Juel1)ICE-3-20101013
000279956 981__ $$aI:(DE-Juel1)JSC-20090406