001     28007
005     20200423203436.0
017 _ _ |a This version is available at the following URL: http://apl.aip.org/
024 7 _ |a 10.1063/1.1556960
|2 DOI
024 7 _ |a WOS:000181201800055
|2 WOS
024 7 _ |a 2128/787
|2 Handle
037 _ _ |a PreJuSER-28007
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Schroer, C. G.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Nanofocusing parabolic refractive X-ray lenses
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2003
300 _ _ |a 1485
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Applied Physics Letters
|x 0003-6951
|0 562
|y 9
|v 82
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100 nm range even at a short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 380 nm by 210 nm at 25 keV in a distance of 42 m from the synchrotron radiation source. Using diamond as the lens material, microbeams with a lateral size down to 20 nm and below are conceivable in the energy range from 10 to 100 keV. (C) 2003 American Institute of Physics.
536 _ _ |a Chemie und Dynamik der Geo-Biosphäre
|c U01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK257
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Kuhlmann, M.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Hunger, M. D.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Günzler, T. F.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Kurapova, O.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Feste, S.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Frehse, F.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Drakopoulos, M.
|b 7
|0 P:(DE-HGF)0
700 1 _ |a Somogyi, H. R.
|b 8
|0 P:(DE-HGF)0
700 1 _ |a Simionovici, A. S.
|b 9
|0 P:(DE-HGF)0
700 1 _ |a Snigirev, A.
|b 10
|0 P:(DE-HGF)0
700 1 _ |a Snigireva, I.
|b 11
|0 P:(DE-HGF)0
700 1 _ |a Schug, C.
|b 12
|0 P:(DE-HGF)0
700 1 _ |a Schröder, W. H.
|b 13
|u FZJ
|0 P:(DE-Juel1)VDB1472
773 _ _ |a 10.1063/1.1556960
|g Vol. 82, p. 1485
|p 1485
|q 82<1485
|0 PERI:(DE-600)1469436-0
|t Applied physics letters
|v 82
|y 2003
|x 0003-6951
856 7 _ |u http://dx.doi.org/10.1063/1.1556960
|u http://hdl.handle.net/2128/787
856 4 _ |u https://juser.fz-juelich.de/record/28007/files/21126.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/28007/files/21126.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/28007/files/21126.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/28007/files/21126.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:28007
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k U01
|v Chemie und Dynamik der Geo-Biosphäre
|l Chemie und Dynamik der Geo-Biosphäre
|b Environment (Umwelt)
|0 G:(DE-Juel1)FUEK257
|x 0
914 1 _ |y 2003
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k ICG-III
|l Phytosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB49
|x 0
970 _ _ |a VDB:(DE-Juel1)21126
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)ICG-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21