000280070 001__ 280070
000280070 005__ 20210129221208.0
000280070 020__ $$a978-1-4799-4378-4
000280070 0247_ $$2doi$$a10.1109/ESSDERC.2014.6948789
000280070 037__ $$aFZJ-2015-07817
000280070 041__ $$aEnglish
000280070 1001_ $$0P:(DE-Juel1)161530$$aSchulte-Braucks, Christian$$b0$$eCorresponding author
000280070 1112_ $$aESSDERC 2014 - 44th European Solid State Device Research Conference$$cVenice Lido$$d2014-09-22 - 2014-09-26$$gESSDERC 2014$$wItaly
000280070 245__ $$aExperimental demonstration of improved analog device performance in GAA-NW-TFETs
000280070 260__ $$bIEEE$$c2014
000280070 300__ $$a178-181
000280070 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1452684635_2870
000280070 3367_ $$033$$2EndNote$$aConference Paper
000280070 3367_ $$2ORCID$$aCONFERENCE_PAPER
000280070 3367_ $$2DataCite$$aOutput Types/Conference Paper
000280070 3367_ $$2DRIVER$$aconferenceObject
000280070 3367_ $$2BibTeX$$aINPROCEEDINGS
000280070 520__ $$aWe present experimental data on analog device performance of p-type planar and gate all around (GAA) nanowire (NW) Tunnel-FETs (TFETs). 10 nm diameter GAA-NW-TFETs reach a maximum transconductance efficiency of 12.7V^−1 which is close to values obtained from simulations. A significant improvement of the analog performance by enhancing the electrostatics from planar TFETs to GAA-NW-TFETs with diameter of 20 nm and 10 nm is demonstrated. A maximum transconductance of 122 μS/μm and on-current up to 23 μA/μm at a gate overdrive of Vgt=Vd=−1V were achieved for the GAA-NW-TFETs. Furthermore a good output current-saturation is observed leading to high intrinsic gain up to 217 which is even higher than in 20 nm FinFETs.
000280070 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000280070 536__ $$0G:(EU-Grant)619509$$aE2SWITCH - Energy Efficient Tunnel FET Switches and Circuits (619509)$$c619509$$fFP7-ICT-2013-11$$x1
000280070 588__ $$aDataset connected to CrossRef Conference
000280070 7001_ $$0P:(DE-HGF)0$$aRichter, Simon$$b1
000280070 7001_ $$0P:(DE-HGF)0$$aKnoll, Lars$$b2
000280070 7001_ $$0P:(DE-HGF)0$$aSelmi, Luca$$b3
000280070 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b4
000280070 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b5
000280070 773__ $$a10.1109/ESSDERC.2014.6948789
000280070 909CO $$ooai:juser.fz-juelich.de:280070$$pec_fundedresources$$pVDB$$popenaire
000280070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161530$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5960$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162211$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280070 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000280070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000280070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000280070 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000280070 9141_ $$y2015
000280070 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280070 920__ $$lyes
000280070 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000280070 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000280070 980__ $$acontrib
000280070 980__ $$aVDB
000280070 980__ $$aUNRESTRICTED
000280070 980__ $$aI:(DE-Juel1)PGI-9-20110106
000280070 980__ $$aI:(DE-82)080009_20140620