001     280070
005     20210129221208.0
020 _ _ |a 978-1-4799-4378-4
024 7 _ |a 10.1109/ESSDERC.2014.6948789
|2 doi
037 _ _ |a FZJ-2015-07817
041 _ _ |a English
100 1 _ |a Schulte-Braucks, Christian
|0 P:(DE-Juel1)161530
|b 0
|e Corresponding author
111 2 _ |a ESSDERC 2014 - 44th European Solid State Device Research Conference
|g ESSDERC 2014
|c Venice Lido
|d 2014-09-22 - 2014-09-26
|w Italy
245 _ _ |a Experimental demonstration of improved analog device performance in GAA-NW-TFETs
260 _ _ |c 2014
|b IEEE
300 _ _ |a 178-181
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1452684635_2870
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a We present experimental data on analog device performance of p-type planar and gate all around (GAA) nanowire (NW) Tunnel-FETs (TFETs). 10 nm diameter GAA-NW-TFETs reach a maximum transconductance efficiency of 12.7V^−1 which is close to values obtained from simulations. A significant improvement of the analog performance by enhancing the electrostatics from planar TFETs to GAA-NW-TFETs with diameter of 20 nm and 10 nm is demonstrated. A maximum transconductance of 122 μS/μm and on-current up to 23 μA/μm at a gate overdrive of Vgt=Vd=−1V were achieved for the GAA-NW-TFETs. Furthermore a good output current-saturation is observed leading to high intrinsic gain up to 217 which is even higher than in 20 nm FinFETs.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
536 _ _ |a E2SWITCH - Energy Efficient Tunnel FET Switches and Circuits (619509)
|0 G:(EU-Grant)619509
|c 619509
|f FP7-ICT-2013-11
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Richter, Simon
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Knoll, Lars
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Selmi, Luca
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhao, Qing-Tai
|0 P:(DE-Juel1)128649
|b 4
700 1 _ |a Mantl, Siegfried
|0 P:(DE-Juel1)128609
|b 5
773 _ _ |a 10.1109/ESSDERC.2014.6948789
909 C O |o oai:juser.fz-juelich.de:280070
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161530
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)5960
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162211
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128649
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128609
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21