001     280071
005     20210129221209.0
024 7 _ |a 10.1109/DRC.2014.6872281
|2 doi
037 _ _ |a FZJ-2015-07818
100 1 _ |a Richter, Simon
|0 P:(DE-Juel1)5960
|b 0
|e Corresponding author
111 2 _ |a 2014 72nd Annual Device Research Conference (DRC)
|g DRC 2014
|c Santa Barbara
|d 2014-06-22 - 2014-06-25
|w CA
245 _ _ |a Experimental demonstration of inverter and NAND operation in p-TFET logic at ultra-low supply voltages down to VDD = 0.15 V
260 _ _ |c 2014
|b IEEE
300 _ _ |a 23-24
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1452684430_2870
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Tunnel-FETs (TFETs) have been studied extensively as a replacement for MOSFETs in the supply voltage regime below VDD = 0.3 V [1]. Due to the TFET ability for offering inverse subthreshold slopes SS below 60 mV/dec, these devices are promising candidates for power efficient integrated circuits. Extensive research has been carried out on the characteristics of single TFET devices [2][3] and first inverter structures have been realized as demonstration of simple logic circuits [4][5][6]. In this work, we present TFET logic circuits based on gate-all-around (GAA) Si nanowire (NW) array TFETs showing small SS and high Ion of 39 μA/μm at VDD = -1 V. This comparably high performance in Si TFETs was realized by a source formation via silicidation and dopant segregation. Using these devices inverters based on p-TFET logic and for the first time TFET NAND gates are demonstrated experimentally. The logic gates operate at ultra-low supply voltages down to VDD = 0.15 V.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Schulte-Braucks, Christian
|0 P:(DE-Juel1)161530
|b 1
700 1 _ |a Knoll, Lars
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Luong, Gia Vinh
|0 P:(DE-Juel1)156277
|b 3
700 1 _ |a Schäfer, Anna
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Trellenkamp, Stefan
|0 P:(DE-Juel1)128856
|b 5
700 1 _ |a Zhao, Qing-Tai
|0 P:(DE-Juel1)128649
|b 6
700 1 _ |a Mantl, Siegfried
|0 P:(DE-Juel1)128609
|b 7
773 _ _ |a 10.1109/DRC.2014.6872281
909 C O |o oai:juser.fz-juelich.de:280071
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)5960
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161530
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162211
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156277
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144017
910 1 _ |a PGI-8-PT
|0 I:(DE-Juel1)PGI-8-PT-20110228
|k PGI-8-PT
|b 5
|6 P:(DE-Juel1)128856
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128649
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128609
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-8-PT-20110228
|k PGI-8-PT
|l PGI-8-PT
|x 2
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-8-PT-20110228
981 _ _ |a I:(DE-Juel1)PGI-8-PT-20110228


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21