000280072 001__ 280072
000280072 005__ 20210129221209.0
000280072 0247_ $$2doi$$a10.1109/JEDS.2015.2400371
000280072 0247_ $$2Handle$$a2128/9687
000280072 0247_ $$2WOS$$aWOS:000369884400005
000280072 037__ $$aFZJ-2015-07819
000280072 041__ $$aEnglish
000280072 082__ $$a620
000280072 1001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b0$$eCorresponding author
000280072 245__ $$aStrained Si and SiGe Nanowire Tunnel FETs for Logic and Analog Applications
000280072 260__ $$a[New York, NY]$$bIEEE$$c2015
000280072 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452755351_10300
000280072 3367_ $$2DataCite$$aOutput Types/Journal article
000280072 3367_ $$00$$2EndNote$$aJournal Article
000280072 3367_ $$2BibTeX$$aARTICLE
000280072 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280072 3367_ $$2DRIVER$$aarticle
000280072 520__ $$aGuided by the Wentzel-Kramers-Brillouin approximation for band-to-band tunneling (BTBT), various performance boosters for Si TFETs are presented and experimentally verified. Along this line, improvements achieved by the implementation of uniaxial strain in nanowires (NW), the benefits of high-k/metal gates, and newly engineered tunneling junctions as well as the effect of scaling the NW to diameters of 10 nm are demonstrated. Specifically, self-aligned ion implantation into the source/drain silicide and dopant segregation has been exploited to achieve steep tunneling junctions with less defects. The obtained devices deliver high on-currents, e.g., gate-all-around (GAA) NW p-TFETs with 10 nm diameter show ID = 64 μA/μm at VDS = VGS - Voff = -1.0 V, and good inverse subthreshold slopes (SS). Tri-gate TFETs reach minimum SS of 30 mV/dec. Dopant segregation helps to minimize the defect density in the junction and thus trap assisted tunneling (TAT) is reduced. Pulsed current-voltage (I-V) measurements have been used to investigate TAT. We could show that scaled NW devices with multigates are less vulnerable to TAT compared to planar devices due to a shorter tunneling path enabled by the inherently good electrostatics. Furthermore, SiGe NW homo- and heterojunction TFETs have been investigated. The advantages of a SiGe/Si heterostructure as compared to a homojunction device are revealed and the effect of line tunneling which results in an increased BTBT generation is demonstrated. It is also shown that complementary strained Si TFET inverters and p-TFET NAND gates can be operated at VDD as low as 0.2 V. This suggests a great potential of TFETs for ultralow power applications. The analysis of GAA NW TFETs for analog applications provided a high transconductance efficiency and large intrinsic gain, even higher than for state-of-the-art 20 nm FinFETs at low voltages.
000280072 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000280072 536__ $$0G:(EU-Grant)619509$$aE2SWITCH - Energy Efficient Tunnel FET Switches and Circuits (619509)$$c619509$$fFP7-ICT-2013-11$$x1
000280072 588__ $$aDataset connected to CrossRef
000280072 7001_ $$0P:(DE-HGF)0$$aRichter, Simon$$b1
000280072 7001_ $$0P:(DE-Juel1)161530$$aSchulte-Braucks, Christian$$b2
000280072 7001_ $$0P:(DE-HGF)0$$aKnoll, Lars$$b3
000280072 7001_ $$0P:(DE-Juel1)145410$$aBlaeser, Sebastian$$b4
000280072 7001_ $$0P:(DE-Juel1)156277$$aLuong, Gia Vinh$$b5
000280072 7001_ $$0P:(DE-Juel1)128856$$aTrellenkamp, Stefan$$b6
000280072 7001_ $$0P:(DE-HGF)0$$aSchäfer, Anna$$b7
000280072 7001_ $$0P:(DE-Juel1)128639$$aTiedemann, Andreas$$b8
000280072 7001_ $$0P:(DE-HGF)0$$aHartmann, Jean-Michel$$b9
000280072 7001_ $$0P:(DE-HGF)0$$aBourdelle, Konstantin$$b10
000280072 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b11
000280072 773__ $$0PERI:(DE-600)2696552-5$$a10.1109/JEDS.2015.2400371$$gVol. 3, no. 3, p. 103 - 114$$n3$$p103 - 114$$tIEEE journal of the Electron Devices Society$$v3$$x2168-6734$$y2015
000280072 8564_ $$uhttps://juser.fz-juelich.de/record/280072/files/07031858.pdf$$yOpenAccess
000280072 8564_ $$uhttps://juser.fz-juelich.de/record/280072/files/07031858.gif?subformat=icon$$xicon$$yOpenAccess
000280072 8564_ $$uhttps://juser.fz-juelich.de/record/280072/files/07031858.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280072 8564_ $$uhttps://juser.fz-juelich.de/record/280072/files/07031858.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280072 8564_ $$uhttps://juser.fz-juelich.de/record/280072/files/07031858.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280072 8564_ $$uhttps://juser.fz-juelich.de/record/280072/files/07031858.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280072 909CO $$ooai:juser.fz-juelich.de:280072$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000280072 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280072 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5960$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280072 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161530$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280072 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162211$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000280072 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145410$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000280072 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156277$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000280072 9101_ $$0I:(DE-Juel1)PGI-8-PT-20110228$$6P:(DE-Juel1)128856$$aPGI-8-PT$$b6$$kPGI-8-PT
000280072 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144017$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000280072 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128639$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000280072 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000280072 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000280072 9141_ $$y2015
000280072 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280072 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280072 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000280072 920__ $$lyes
000280072 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000280072 9201_ $$0I:(DE-Juel1)PGI-8-PT-20110228$$kPGI-8-PT$$lPGI-8-PT$$x1
000280072 980__ $$ajournal
000280072 980__ $$aVDB
000280072 980__ $$aUNRESTRICTED
000280072 980__ $$aI:(DE-Juel1)PGI-9-20110106
000280072 980__ $$aI:(DE-Juel1)PGI-8-PT-20110228
000280072 9801_ $$aUNRESTRICTED
000280072 9801_ $$aFullTexts
000280072 981__ $$aI:(DE-Juel1)PGI-8-PT-20110228