000280091 001__ 280091
000280091 005__ 20240712112834.0
000280091 0247_ $$2doi$$a10.1038/ncomms8824
000280091 0247_ $$2Handle$$a2128/9617
000280091 0247_ $$2WOS$$aWOS:000358860900004
000280091 0247_ $$2altmetric$$aaltmetric:4290402
000280091 0247_ $$2pmid$$apmid:26183949
000280091 037__ $$aFZJ-2015-07838
000280091 082__ $$a500
000280091 1001_ $$0P:(DE-HGF)0$$aStanding, Anthony$$b0
000280091 245__ $$aEfficient water reduction with gallium phosphide nanowires
000280091 260__ $$aLondon$$bNature Publishing Group$$c2015
000280091 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1450702368_10036
000280091 3367_ $$2DataCite$$aOutput Types/Journal article
000280091 3367_ $$00$$2EndNote$$aJournal Article
000280091 3367_ $$2BibTeX$$aARTICLE
000280091 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280091 3367_ $$2DRIVER$$aarticle
000280091 520__ $$aPhotoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires
000280091 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000280091 588__ $$aDataset connected to CrossRef
000280091 7001_ $$0P:(DE-HGF)0$$aAssali, Simone$$b1
000280091 7001_ $$0P:(DE-HGF)0$$aGao, Lu$$b2
000280091 7001_ $$0P:(DE-HGF)0$$aVerheijen, Marcel A.$$b3
000280091 7001_ $$0P:(DE-HGF)0$$avan Dam, Dick$$b4
000280091 7001_ $$0P:(DE-HGF)0$$aCui, Yingchao$$b5
000280091 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b6$$ufzj
000280091 7001_ $$0P:(DE-HGF)0$$aHaverkort, Jos E. M.$$b7
000280091 7001_ $$0P:(DE-HGF)0$$aBakkers, Erik P. A. M.$$b8$$eCorresponding author
000280091 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/ncomms8824$$gVol. 6, p. 7824 -$$p7824 -$$tNature Communications$$v6$$x2041-1723$$y2015
000280091 8564_ $$uhttps://juser.fz-juelich.de/record/280091/files/ncomms8824.pdf$$yOpenAccess
000280091 8564_ $$uhttps://juser.fz-juelich.de/record/280091/files/ncomms8824.gif?subformat=icon$$xicon$$yOpenAccess
000280091 8564_ $$uhttps://juser.fz-juelich.de/record/280091/files/ncomms8824.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280091 8564_ $$uhttps://juser.fz-juelich.de/record/280091/files/ncomms8824.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280091 8564_ $$uhttps://juser.fz-juelich.de/record/280091/files/ncomms8824.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280091 8564_ $$uhttps://juser.fz-juelich.de/record/280091/files/ncomms8824.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280091 909CO $$ooai:juser.fz-juelich.de:280091$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000280091 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280091 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000280091 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000280091 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000280091 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2014
000280091 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2014
000280091 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280091 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280091 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280091 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280091 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280091 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000280091 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280091 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000280091 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280091 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280091 9141_ $$y2015
000280091 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000280091 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000280091 920__ $$lyes
000280091 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000280091 9801_ $$aUNRESTRICTED
000280091 9801_ $$aFullTexts
000280091 980__ $$ajournal
000280091 980__ $$aVDB
000280091 980__ $$aUNRESTRICTED
000280091 980__ $$aI:(DE-Juel1)IEK-9-20110218
000280091 981__ $$aI:(DE-Juel1)IET-1-20110218