TY  - JOUR
AU  - Standing, Anthony
AU  - Assali, Simone
AU  - Gao, Lu
AU  - Verheijen, Marcel A.
AU  - van Dam, Dick
AU  - Cui, Yingchao
AU  - Notten, Peter H. L.
AU  - Haverkort, Jos E. M.
AU  - Bakkers, Erik P. A. M.
TI  - Efficient water reduction with gallium phosphide nanowires
JO  - Nature Communications
VL  - 6
SN  - 2041-1723
CY  - London
PB  - Nature Publishing Group
M1  - FZJ-2015-07838
SP  - 7824 -
PY  - 2015
AB  - Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000358860900004
C6  - pmid:26183949
DO  - DOI:10.1038/ncomms8824
UR  - https://juser.fz-juelich.de/record/280091
ER  -