001     280091
005     20240712112834.0
024 7 _ |a 10.1038/ncomms8824
|2 doi
024 7 _ |a 2128/9617
|2 Handle
024 7 _ |a WOS:000358860900004
|2 WOS
024 7 _ |a altmetric:4290402
|2 altmetric
024 7 _ |a pmid:26183949
|2 pmid
037 _ _ |a FZJ-2015-07838
082 _ _ |a 500
100 1 _ |0 P:(DE-HGF)0
|a Standing, Anthony
|b 0
245 _ _ |a Efficient water reduction with gallium phosphide nanowires
260 _ _ |a London
|b Nature Publishing Group
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1450702368_10036
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires
536 _ _ |0 G:(DE-HGF)POF3-131
|a 131 - Electrochemical Storage (POF3-131)
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Assali, Simone
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Gao, Lu
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Verheijen, Marcel A.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a van Dam, Dick
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Cui, Yingchao
|b 5
700 1 _ |0 P:(DE-Juel1)165918
|a Notten, Peter H. L.
|b 6
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Haverkort, Jos E. M.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Bakkers, Erik P. A. M.
|b 8
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2553671-0
|a 10.1038/ncomms8824
|g Vol. 6, p. 7824 -
|p 7824 -
|t Nature Communications
|v 6
|x 2041-1723
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/280091/files/ncomms8824.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280091/files/ncomms8824.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280091/files/ncomms8824.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280091/files/ncomms8824.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280091/files/ncomms8824.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280091/files/ncomms8824.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:280091
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165918
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-131
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NAT COMMUN : 2014
915 _ _ |0 StatID:(DE-HGF)9910
|2 StatID
|a IF >= 10
|b NAT COMMUN : 2014
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21