000280095 001__ 280095
000280095 005__ 20240712100836.0
000280095 0247_ $$2doi$$a10.5194/angeo-33-483-2015
000280095 0247_ $$2Handle$$a2128/9622
000280095 0247_ $$2WOS$$aWOS:000353840000007
000280095 037__ $$aFZJ-2015-07842
000280095 041__ $$aEnglish
000280095 082__ $$a550
000280095 1001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b0$$eCorresponding author$$ufzj
000280095 245__ $$aDriving of the SAO by gravity waves as observed from satellite
000280095 260__ $$aKatlenburg, Lindau$$bCopernicus$$c2015
000280095 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1450769321_21620
000280095 3367_ $$2DataCite$$aOutput Types/Journal article
000280095 3367_ $$00$$2EndNote$$aJournal Article
000280095 3367_ $$2BibTeX$$aARTICLE
000280095 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280095 3367_ $$2DRIVER$$aarticle
000280095 520__ $$aIt is known that atmospheric dynamics in the tropical stratosphere have an influence on higher altitudes and latitudes as well as on surface weather and climate. In the tropics, the dynamics are governed by an interplay of the quasi-biennial oscillation (QBO) and semiannual oscillation (SAO) of the zonal wind. The QBO is dominant in the lower and middle stratosphere, and the SAO in the upper stratosphere/lower mesosphere. For both QBO and SAO the driving by atmospheric waves plays an important role. In particular, the role of gravity waves is still not well understood. In our study we use observations of the High Resolution Dynamics Limb Sounder (HIRDLS) satellite instrument to derive gravity wave momentum fluxes and gravity wave drag in order to investigate the interaction of gravity waves with the SAO. These observations are compared with the ERA-Interim reanalysis. Usually, QBO westward winds are much stronger than QBO eastward winds. Therefore, mainly gravity waves with westward-directed phase speeds are filtered out through critical-level filtering already below the stratopause region. Accordingly, HIRDLS observations show that gravity waves contribute to the SAO momentum budget mainly during eastward wind shear, and not much during westward wind shear. These findings confirm theoretical expectations and are qualitatively in good agreement with ERA-Interim and other modeling studies. In ERA-Interim most of the westward SAO driving is due to planetary waves, likely of extratropical origin. Still, we find in both observations and ERA-Interim that sometimes westward-propagating gravity waves may contribute to the westward driving of the SAO. Four characteristic cases of atmospheric background conditions are identified. The forcings of the SAO in these cases are discussed in detail, supported by gravity wave spectra observed by HIRDLS. In particular, we find that the gravity wave forcing of the SAO cannot be explained by critical-level filtering alone; gravity wave saturation without critical levels being reached is also important.
000280095 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000280095 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b1$$ufzj
000280095 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b2$$ufzj
000280095 773__ $$0PERI:(DE-600)1458425-6$$a10.5194/angeo-33-483-2015$$n4$$p483-504$$tAnnales geophysicae$$v33$$x0992-7689$$y2015
000280095 8564_ $$uhttps://juser.fz-juelich.de/record/280095/files/angeo-33-483-2015.pdf$$yOpenAccess
000280095 8564_ $$uhttps://juser.fz-juelich.de/record/280095/files/angeo-33-483-2015.gif?subformat=icon$$xicon$$yOpenAccess
000280095 8564_ $$uhttps://juser.fz-juelich.de/record/280095/files/angeo-33-483-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280095 8564_ $$uhttps://juser.fz-juelich.de/record/280095/files/angeo-33-483-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280095 8564_ $$uhttps://juser.fz-juelich.de/record/280095/files/angeo-33-483-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280095 8564_ $$uhttps://juser.fz-juelich.de/record/280095/files/angeo-33-483-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280095 8767_ $$92015-07-01$$d2015-07-01$$eAPC$$jZahlung erfolgt$$pangeo-2014-177
000280095 909CO $$ooai:juser.fz-juelich.de:280095$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000280095 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280095 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000280095 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANN GEOPHYS-GERMANY : 2014
000280095 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000280095 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280095 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280095 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280095 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280095 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280095 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280095 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280095 9141_ $$y2015
000280095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280095 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000280095 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000280095 9801_ $$aUNRESTRICTED
000280095 9801_ $$aFullTexts
000280095 980__ $$ajournal
000280095 980__ $$aVDB
000280095 980__ $$aUNRESTRICTED
000280095 980__ $$aI:(DE-Juel1)IEK-7-20101013
000280095 980__ $$aAPC
000280095 981__ $$aI:(DE-Juel1)ICE-4-20101013