001     280095
005     20240712100836.0
024 7 _ |2 doi
|a 10.5194/angeo-33-483-2015
024 7 _ |2 Handle
|a 2128/9622
024 7 _ |2 WOS
|a WOS:000353840000007
037 _ _ |a FZJ-2015-07842
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 P:(DE-Juel1)129117
|a Ern, Manfred
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Driving of the SAO by gravity waves as observed from satellite
260 _ _ |a Katlenburg, Lindau
|b Copernicus
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1450769321_21620
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a It is known that atmospheric dynamics in the tropical stratosphere have an influence on higher altitudes and latitudes as well as on surface weather and climate. In the tropics, the dynamics are governed by an interplay of the quasi-biennial oscillation (QBO) and semiannual oscillation (SAO) of the zonal wind. The QBO is dominant in the lower and middle stratosphere, and the SAO in the upper stratosphere/lower mesosphere. For both QBO and SAO the driving by atmospheric waves plays an important role. In particular, the role of gravity waves is still not well understood. In our study we use observations of the High Resolution Dynamics Limb Sounder (HIRDLS) satellite instrument to derive gravity wave momentum fluxes and gravity wave drag in order to investigate the interaction of gravity waves with the SAO. These observations are compared with the ERA-Interim reanalysis. Usually, QBO westward winds are much stronger than QBO eastward winds. Therefore, mainly gravity waves with westward-directed phase speeds are filtered out through critical-level filtering already below the stratopause region. Accordingly, HIRDLS observations show that gravity waves contribute to the SAO momentum budget mainly during eastward wind shear, and not much during westward wind shear. These findings confirm theoretical expectations and are qualitatively in good agreement with ERA-Interim and other modeling studies. In ERA-Interim most of the westward SAO driving is due to planetary waves, likely of extratropical origin. Still, we find in both observations and ERA-Interim that sometimes westward-propagating gravity waves may contribute to the westward driving of the SAO. Four characteristic cases of atmospheric background conditions are identified. The forcings of the SAO in these cases are discussed in detail, supported by gravity wave spectra observed by HIRDLS. In particular, we find that the gravity wave forcing of the SAO cannot be explained by critical-level filtering alone; gravity wave saturation without critical levels being reached is also important.
536 _ _ |0 G:(DE-HGF)POF3-244
|a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|c POF3-244
|f POF III
|x 0
700 1 _ |0 P:(DE-Juel1)129143
|a Preusse, Peter
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)129145
|a Riese, Martin
|b 2
|u fzj
773 _ _ |0 PERI:(DE-600)1458425-6
|a 10.5194/angeo-33-483-2015
|n 4
|p 483-504
|t Annales geophysicae
|v 33
|x 0992-7689
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/280095/files/angeo-33-483-2015.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280095/files/angeo-33-483-2015.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280095/files/angeo-33-483-2015.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280095/files/angeo-33-483-2015.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280095/files/angeo-33-483-2015.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280095/files/angeo-33-483-2015.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:280095
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129117
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129143
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129145
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-244
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Atmosphäre und Klima
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ANN GEOPHYS-GERMANY : 2014
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21