000280098 001__ 280098
000280098 005__ 20240712100854.0
000280098 0247_ $$2doi$$a10.5194/acp-15-6651-2015
000280098 0247_ $$2ISSN$$a1680-7316
000280098 0247_ $$2ISSN$$a1680-7324
000280098 0247_ $$2Handle$$a2128/9620
000280098 0247_ $$2WOS$$aWOS:000357117500007
000280098 037__ $$aFZJ-2015-07845
000280098 082__ $$a550
000280098 1001_ $$0P:(DE-HGF)0$$aDi Liberto, L.$$b0$$eCorresponding author
000280098 245__ $$aLagrangian analysis of microphysical and chemical processes in the Antarctic stratosphere: a case study
000280098 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000280098 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1450764839_21626
000280098 3367_ $$2DataCite$$aOutput Types/Journal article
000280098 3367_ $$00$$2EndNote$$aJournal Article
000280098 3367_ $$2BibTeX$$aARTICLE
000280098 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280098 3367_ $$2DRIVER$$aarticle
000280098 520__ $$aWe investigated chemical and microphysical processes in the late winter in the Antarctic lower stratosphere, after the first chlorine activation and initial ozone depletion. We focused on a time interval when both further chlorine activation and ozone loss, but also chlorine deactivation, occur.We performed a comprehensive Lagrangian analysis to simulate the evolution of an air mass along a 10-day trajectory, coupling a detailed microphysical box model to a chemistry model. Model results have been compared with in situ and remote sensing measurements of particles and ozone at the start and end points of the trajectory, and satellite measurements of key chemical species and clouds along it.Different model runs have been performed to understand the relative role of solid and liquid polar stratospheric cloud (PSC) particles for the heterogeneous chemistry, and for the denitrification caused by particle sedimentation. According to model results, under the conditions investigated, ozone depletion is not affected significantly by the presence of nitric acid trihydrate (NAT) particles, as the observed depletion rate can equally well be reproduced by heterogeneous chemistry on cold liquid aerosol, with a surface area density close to background values.Under the conditions investigated, the impact of denitrification is important for the abundances of chlorine reservoirs after PSC evaporation, thus stressing the need to use appropriate microphysical models in the simulation of chlorine deactivation. We found that the effect of particle sedimentation and denitrification on the amount of ozone depletion is rather small in the case investigated. In the first part of the analyzed period, when a PSC was present in the air mass, sedimentation led to a smaller available particle surface area and less chlorine activation, and thus less ozone depletion. After the PSC evaporation, in the last 3 days of the simulation, denitrification increases ozone loss by hampering chlorine deactivation.
000280098 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000280098 588__ $$aDataset connected to CrossRef
000280098 7001_ $$0P:(DE-HGF)0$$aLehmann, R.$$b1
000280098 7001_ $$0P:(DE-Juel1)159462$$aTritscher, I.$$b2$$ufzj
000280098 7001_ $$0P:(DE-HGF)0$$aFierli, F.$$b3
000280098 7001_ $$0P:(DE-HGF)0$$aMercer, J. L.$$b4
000280098 7001_ $$0P:(DE-HGF)0$$aSnels, M.$$b5
000280098 7001_ $$0P:(DE-HGF)0$$aDi Donfrancesco, G.$$b6
000280098 7001_ $$0P:(DE-HGF)0$$aDeshler, T.$$b7
000280098 7001_ $$0P:(DE-HGF)0$$aLuo, B. P.$$b8
000280098 7001_ $$0P:(DE-Juel1)129122$$aGrooss, Jens-Uwe$$b9$$ufzj
000280098 7001_ $$0P:(DE-HGF)0$$aArnone, E.$$b10
000280098 7001_ $$0P:(DE-HGF)0$$aDinelli, B. M.$$b11
000280098 7001_ $$0P:(DE-HGF)0$$aCairo, F.$$b12
000280098 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-15-6651-2015$$gVol. 15, no. 12, p. 6651 - 6665$$n12$$p6651 - 6665$$tAtmospheric chemistry and physics$$v15$$x1680-7324$$y2015
000280098 8564_ $$uhttps://juser.fz-juelich.de/record/280098/files/acp-15-6651-2015.pdf$$yOpenAccess
000280098 8564_ $$uhttps://juser.fz-juelich.de/record/280098/files/acp-15-6651-2015.gif?subformat=icon$$xicon$$yOpenAccess
000280098 8564_ $$uhttps://juser.fz-juelich.de/record/280098/files/acp-15-6651-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280098 8564_ $$uhttps://juser.fz-juelich.de/record/280098/files/acp-15-6651-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280098 8564_ $$uhttps://juser.fz-juelich.de/record/280098/files/acp-15-6651-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280098 8564_ $$uhttps://juser.fz-juelich.de/record/280098/files/acp-15-6651-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280098 909CO $$ooai:juser.fz-juelich.de:280098$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000280098 9141_ $$y2015
000280098 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000280098 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280098 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280098 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000280098 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280098 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280098 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280098 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280098 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2014
000280098 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280098 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2014
000280098 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280098 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159462$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000280098 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000280098 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000280098 9801_ $$aUNRESTRICTED
000280098 9801_ $$aFullTexts
000280098 980__ $$ajournal
000280098 980__ $$aVDB
000280098 980__ $$aUNRESTRICTED
000280098 980__ $$aI:(DE-Juel1)IEK-7-20101013
000280098 981__ $$aI:(DE-Juel1)ICE-4-20101013