000280109 001__ 280109
000280109 005__ 20210129221218.0
000280109 0247_ $$2doi$$a10.1016/j.surfcoat.2015.08.034
000280109 0247_ $$2ISSN$$a0257-8972
000280109 0247_ $$2ISSN$$a1879-3347
000280109 0247_ $$2WOS$$aWOS:000363825100009
000280109 037__ $$aFZJ-2015-07855
000280109 082__ $$a620
000280109 1001_ $$0P:(DE-HGF)0$$aWang, Tao$$b0$$eCorresponding author
000280109 245__ $$aLarge scale Molecular Dynamics simulation of microstructure formation during thermal spraying of pure copper
000280109 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000280109 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452496425_905
000280109 3367_ $$2DataCite$$aOutput Types/Journal article
000280109 3367_ $$00$$2EndNote$$aJournal Article
000280109 3367_ $$2BibTeX$$aARTICLE
000280109 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280109 3367_ $$2DRIVER$$aarticle
000280109 520__ $$aThermal spray processes are widely used for the manufacture of advanced coating systems, e.g. metallic coatings for wear and corrosion protection. The desired coating properties are closely related to the microstructure, which is highly influenced by the processing parameters, such as temperature, size and velocity of the sprayed particles. In this paper, large scale Molecular Dynamics simulations are conducted to investigate the microstructure formation mechanisms during the spraying process of hot nano-particles onto a substrate at room temperature using pure copper as a benchmark material representing for a wider class of face-centered-cubic metals. To evaluate the influence of processing parameters on the coating morphology, a number of simulations are performed in which the initial temperature, size and velocity of copper particles are systematically varied in order to investigate the thermal and microstructural evolution during impaction. Two distinct types of microstructural formation mechanisms, resulting in different coating morphologies, are observed in the present investigation, which are either governed by plastic deformation or by the process of melting and subsequent solidification. Furthermore, a thermodynamically motivated model as a function of the particle temperature and velocity is developed, which predicts the microstructural mechanisms observed in the simulations. The results provide an elementary insight into the microstructure formation mechanisms on an atomistic scale, which can serve as basic input for continuum modeling of thermal spray process.
000280109 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000280109 588__ $$aDataset connected to CrossRef
000280109 7001_ $$0P:(DE-HGF)0$$aBegau, Christoph$$b1$$eCorresponding author
000280109 7001_ $$0P:(DE-Juel1)132274$$aSutmann, Godehard$$b2$$eCorresponding author
000280109 7001_ $$0P:(DE-HGF)0$$aHartmaier, Alexander$$b3$$eCorresponding author
000280109 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2015.08.034$$gVol. 280, p. 72 - 80$$p72 - 80$$tSurface and coatings technology$$v280$$x0257-8972$$y2015
000280109 8564_ $$uhttps://juser.fz-juelich.de/record/280109/files/1-s2.0-S0257897215302085-main.pdf$$yRestricted
000280109 8564_ $$uhttps://juser.fz-juelich.de/record/280109/files/1-s2.0-S0257897215302085-main.gif?subformat=icon$$xicon$$yRestricted
000280109 8564_ $$uhttps://juser.fz-juelich.de/record/280109/files/1-s2.0-S0257897215302085-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280109 8564_ $$uhttps://juser.fz-juelich.de/record/280109/files/1-s2.0-S0257897215302085-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280109 8564_ $$uhttps://juser.fz-juelich.de/record/280109/files/1-s2.0-S0257897215302085-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280109 8564_ $$uhttps://juser.fz-juelich.de/record/280109/files/1-s2.0-S0257897215302085-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280109 909CO $$ooai:juser.fz-juelich.de:280109$$pVDB
000280109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132274$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280109 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000280109 9141_ $$y2015
000280109 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280109 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000280109 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF COAT TECH : 2014
000280109 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280109 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280109 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280109 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280109 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280109 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280109 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280109 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280109 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000280109 980__ $$ajournal
000280109 980__ $$aVDB
000280109 980__ $$aUNRESTRICTED
000280109 980__ $$aI:(DE-Juel1)JSC-20090406